ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating an Overview Report over Many Documents

77   0   0.0 ( 0 )
 نشر من قبل Jingwen Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to efficiently generate an accurate, well-structured overview report (ORPT) over thousands of related documents is challenging. A well-structured ORPT consists of sections of multiple levels (e.g., sections and subsections). None of the existing multi-document summarization (MDS) algorithms is directed toward this task. To overcome this obstacle, we present NDORGS (Numerous Documents Overview Report Generation Scheme) that integrates text filtering, keyword scoring, single-document summarization (SDS), topic modeling, MDS, and title generation to generate a coherent, well-structured ORPT. We then devise a multi-criteria evaluation method using techniques of text mining and multi-attribute decision making on a combination of human judgments, running time, information coverage, and topic diversity. We evaluate ORPTs generated by NDORGS on two large corpora of documents, where one is classified and the other unclassified. We show that, using Saatys pairwise comparison 9-point scale and under TOPSIS, the ORPTs generated on SDSs with the length of 20% of the original documents are the best overall on both datasets.



قيم البحث

اقرأ أيضاً

Motivated by recent evidence pointing out the fragility of high-performing span prediction models, we direct our attention to multiple choice reading comprehension. In particular, this work introduces a novel method for improving answer selection on long documents through weighted global normalization of predictions over portions of the documents. We show that applying our method to a span prediction model adapted for answer selection helps model performance on long summaries from NarrativeQA, a challenging reading comprehension dataset with an answer selection task, and we strongly improve on the task baseline performance by +36.2 Mean Reciprocal Rank.
Ambiguous user queries in search engines result in the retrieval of documents that often span multiple topics. One potential solution is for the search engine to generate multiple refined queries, each of which relates to a subset of the documents sp anning the same topic. A preliminary step towards this goal is to generate a question that captures common concepts of multiple documents. We propose a new task of generating common question from multiple documents and present simple variant of an existing multi-source encoder-decoder framework, called the Multi-Source Question Generator (MSQG). We first train an RNN-based single encoder-decoder generator from (single document, question) pairs. At test time, given multiple documents, the Distribute step of our MSQG model predicts target word distributions for each document using the trained model. The Aggregate step aggregates these distributions to generate a common question. This simple yet effective strategy significantly outperforms several existing baseline models applied to the new task when evaluated using automated metrics and human judgments on the MS-MARCO-QA dataset.
Interpretable multi-hop reading comprehension (RC) over multiple documents is a challenging problem because it demands reasoning over multiple information sources and explaining the answer prediction by providing supporting evidences. In this paper, we propose an effective and interpretable Select, Answer and Explain (SAE) system to solve the multi-document RC problem. Our system first filters out answer-unrelated documents and thus reduce the amount of distraction information. This is achieved by a document classifier trained with a novel pairwise learning-to-rank loss. The selected answer-related documents are then input to a model to jointly predict the answer and supporting sentences. The model is optimized with a multi-task learning objective on both token level for answer prediction and sentence level for supporting sentences prediction, together with an attention-based interaction between these two tasks. Evaluated on HotpotQA, a challenging multi-hop RC data set, the proposed SAE system achieves top competitive performance in distractor setting compared to other existing systems on the leaderboard.
Document digitization is essential for the digital transformation of our societies, yet a crucial step in the process, Optical Character Recognition (OCR), is still not perfect. Even commercial OCR systems can produce questionable output depending on the fidelity of the scanned documents. In this paper, we demonstrate an effective framework for mitigating OCR errors for any downstream NLP task, using Named Entity Recognition (NER) as an example. We first address the data scarcity problem for model training by constructing a document synthesis pipeline, generating realistic but degraded data with NER labels. We measure the NER accuracy drop at various degradation levels and show that a text restoration model, trained on the degraded data, significantly closes the NER accuracy gaps caused by OCR errors, including on an out-of-domain dataset. For the benefit of the community, we have made the document synthesis pipeline available as an open-source project.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا