ﻻ يوجد ملخص باللغة العربية
Collective systems across length scales display order in their spatiotemporal patterns. These patterns contain information that correlates with their orders and reflects the system dynamics. Here we show the collective patterns and behaviors of up to 250 micro-rafts spinning at the air-water interface and demonstrate the link between order and information in the collective motion. These micro-rafts display a rich variety of collective behaviors that resemble thermodynamic equilibrium phases such as gases, hexatics, and crystals. Moreover, owing to the unique coupling of magnetic and fluidic forces, a number of collective properties and functions emerge as the micro-rafts interact with magnetic potential and nonmagnetic floating objects. Our findings are relevant for analyzing collective systems in nature and for designing collective robotic systems.
Controlling the phases of matter is a challenge that spans from condensed materials to biological systems. Here, by imposing a geometric boundary condition, we study controlled collective motion of Escherichia coli bacteria. A circular microwell isol
Many systems, including biological tissues and foams, are made of highly packed units having high deformability but low compressibility. At two dimensions, these systems offer natural tesselations of plane with fixed density, in which transitions fro
In this Letter, we study the collective behaviour of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedently large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that,
Conspectus: The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond th
We propose a unifying, analytical theory accounting for the self-organization of colloidal systems in nano- or micro-cluster phases. We predict the distribution of cluter sizes with respect to interaction parameters and colloid concentration. In part