ﻻ يوجد ملخص باللغة العربية
Conspectus: The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signalling which can be seen as a basic form of communication. Remarkably, the past decade has let to the development of synthetic microswimmers like e.g. autophoretic Janus colloids, which can self-propel through a solvent, analogously to bacteria and other microorganims. The mechanism underlying their self-propulsion involves the production of certain chemicals. The same chemicals involved in the self-propulsion mechanism also act on other microswimmers and bias their swimming direction towards (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to chemotactic motile microorganisms. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed towards macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, travelling waves and more complex continously reshaping patterns. In all these cases `synthetic signalling can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles.
Active matter, comprising many active agents interacting and moving in fluids or more complex environments, is a commonly occurring state of matter in biological and physical systems. By its very nature active matter systems exist in nonequilibrium s
This article summarizes some of the open questions in the field of active matter that have emerged during Active20, a nine-week program held at the Kavli Institute for Theoretical Physics (KITP) in Spring 2020. The article does not provide a review o
Turbulence in driven stratified active matter is considered. The relevant parameters characterizing the problem are the Reynolds number Re and an active matter Richardson-like number,R. In the mixing limit,Re>>1, R<<1, we show that the standard Kolmo
We follow the dynamics of an ensemble of interacting self-propelled motorized particles in contact with an equilibrated thermal bath. We find that the fluctuation-dissipation relation allows for the definition of an effective temperature that is comp
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framew