ترغب بنشر مسار تعليمي؟ اضغط هنا

Number-conserving interacting fermion models with exact topological superconducting ground states

76   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to construct number-conserving Hamiltonians whose ground states exactly reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be constructed not only for the usual $s$-wave BCS state, but also for more exotic states of this form, including the ground states of Kitaev wires and 2D topological superconductors. This method leads to infinite families of locally-interacting fermion models with exact topological superconducting ground states. After explaining the general technique, we apply this method to construct two specific classes of models. The first one is a one-dimensional double wire lattice model with Majorana-like degenerate ground states. The second one is a two-dimensional $p_x+ip_y$ superconducting model, where we also obtain analytic expressions for topologically degenerate ground states in the presence of vortices. Our models may provide a deeper conceptual understanding of how Majorana zero modes could emerge in condensed matter systems, as well as inspire novel routes to realize them in experiment.



قيم البحث

اقرأ أيضاً

Charge conserving spin singlet and spin triplet superconductors in one dimension are described by the $U(1)$ symmetric Thirring Hamiltonian. We solve the model with open boundary conditions on the a finite line segment by means of the Bethe Ansatz. W e show that the ground state displays a fourfold degeneracy when the bulk is in the spin triplet superconducting phase. This degeneracy corresponds to the existence of zero energy boundary bound states localized at the edges which may be interpreted, in the light of the previous semi-classical analysis due to Kesselman and Berg cite{Keselman2015}, as resulting from the existence of fractional spin $pm 1/4$ localized at the two edges of the system.
We present a family of spin ladder models which admit exact solution for the ground state and exhibit non-Haldane spin liquid properties as predicted recently by Nersesyan and Tsvelik [Phys. Rev. Lett. v.78, 3939 (1997)], and study their excitation s pectrum using a simple variational ansatz. The elementary excitation is neither a magnon nor a spinon, but a pair of propagating triplet or singlet solitons connecting two spontaneously dimerized ground states. Second-order phase transitions separate this phase from the Haldane phase and the rung-dimer phase.
Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photons energy is usually not evident. However, by coupling a superconductin g qubit to signals on a microwave transmission line, it is possible to construct an integrated circuit where the presence or absence of even a single photon can have a dramatic effect. This system is called circuit quantum electrodynamics (QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit can absorb and re-emit a single photon many times. Here, we report a circuit QED experiment which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability to find the corresponding photon number in the cavity. This effect has been used to distinguish between coherent and thermal fields and could be used to create a photon statistics analyzer. Since no photons are absorbed by this process, one should be able to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.
The classification and construction of symmetry protected topological (SPT) phases have been intensively studied in interacting systems recently. To our surprise, in interacting fermion systems, there exists a new class of the so-called anomalous SPT (ASPT) states which are only well defined on the boundary of a trivial fermionic bulk system. We first demonstrate the essential idea by considering an anomalous topological superconductor with time reversal symmetry $T^2=1$ in 2D. The physical reason is that the fermion parity might be changed locally by certain symmetry action, but is conserved if we introduce a bulk. Then we discuss the layer structure and systematical construction of ASPT states in interacting fermion systems in 2D with a total symmetry $G_f=G_btimesmathbb{Z}_2^f$. Finally, potential experimental realizations of ASPT states are also addressed.
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak ph ase of the lower band eigenvector and the winding number of the Hamiltonians. For exponentially-decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive non-local Dirac fermion localised at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا