ترغب بنشر مسار تعليمي؟ اضغط هنا

Polaritonic Contribution to the Casimir Energy between two Graphene Layers

104   0   0.0 ( 0 )
 نشر من قبل Christoph Egerland
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the role of surface polaritons in the zero-temperature Casimir effect between two graphene layers that are described by the Dirac model. A parametric approach allows us to accurately calculate the dispersion relations of the relevant modes and to evaluate their contribution to the total Casimir energy. The resulting force features a change of sign from attractive to repulsive as the distance between the layers increases. Contrary to similar calculations that have been performed for metallic plates, our asymptotic analysis demonstrates that at small separations the polaritonic contribution becomes negligible relative to the total energy.



قيم البحث

اقرأ أيضاً

Several experimental demonstrations of the Casimir force between two closely spaced bodies have been realized over the past two decades. Extending the theory to incorporate the behavior of the force between two superconducting films close to their tr ansition temperature has resulted in competing predictions. To date, no experiment exists that can test these theories, partly due to the difficulty in aligning two superconductors in close proximity, while still allowing for a temperature-independent readout of the arising force between them. Here we present an on-chip platform based on an optomechanical cavity in combination with a grounded superconducting capacitor, which overcomes these challenges and opens up the possibility to probe modifications to the Casimir effect between two closely spaced, freestanding superconductors as they transition into a superconducting state. We also perform preliminary force measurements that demonstrate the capability of these devices to probe the interplay between two widely measured quantum effects: Casimir forces and superconductivity.
Stimulated emission and absorption are two fundamental processes of light-matter interaction, and the coefficients of the two processes should be equal in general. However, we will describe a generic method to realize significant difference between t he stimulated emission and absorption coefficients of two nondegenerate energy levels, which we refer to as nonreciprocal transition. As a simple implementation, a cyclic three-level atom system, comprising two nondegenerate energy levels and one auxiliary energy level, is employed to show nonreciprocal transition via a combination of synthetic magnetism and reservoir engineering. Moreover, a single-photon nonreciprocal transporter is proposed using two one dimensional semi-infinite coupled-resonator waveguides connected by an atom with nonreciprocal transition effect. Our work opens up a route to design atom-mediated nonreciprocal devices in a wide range of physical systems.
A fundamental prediction of quantum mechanics is that there are random fluctuations everywhere in a vacuum because of the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect, which has attracted broad interests. The Casimir effect can dominate the interaction between microstructures at small separations and has been utilized to realize nonlinear oscillation, quantum trapping, phonon transfer, and dissipation dilution. However, a non-reciprocal device based on quantum vacuum fluctuations remains an unexplored frontier. Here we report quantum vacuum mediated non-reciprocal energy transfer between two micromechanical oscillators. We modulate the Casimir interaction parametrically to realize strong coupling between two oscillators with different resonant frequencies. We engineer the systems spectrum to have an exceptional point in the parameter space and observe the asymmetric topological structure near it. By dynamically changing the parameters near the exceptional point and utilizing the non-adiabaticity of the process, we achieve non-reciprocal energy transfer with high contrast. Our work represents an important development in utilizing quantum vacuum fluctuations to regulate energy transfer at the nanoscale and build functional Casimir devices.
100 - Mingkang Wang , L. Tang , C. Y. Ng 2020
Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the magnitude of which increases monotonically as the separation decreases. By introducing nanoscale gratings to the surfaces, recent advances have opened opport unities for controlling the Casimir force in complex geometries. Here, we measure the Casimir force between two rectangular gratings in regimes not accessible before. Using an on-chip detection platform, we achieve accurate alignment between the two gratings so that they interpenetrate as the separation is reduced. Just before interpenetration occurs, the measured Casimir force is found to have a geometry dependence that is much stronger than previous experiments, with deviations from the proximity force approximation reaching a factor of ~500. After the gratings interpenetrate each other, the Casimir force becomes non-zero and independent of displacement. This work shows that the presence of gratings can strongly modify the Casimir force to control the interaction between nanomechanical components.
96 - L. Tang , M. Wang , C. Y. Ng 2017
Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling the Casimir force via the optical properties of the materials, a number of novel geometries have been pro posed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the Casimir force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا