ﻻ يوجد ملخص باللغة العربية
Several experimental demonstrations of the Casimir force between two closely spaced bodies have been realized over the past two decades. Extending the theory to incorporate the behavior of the force between two superconducting films close to their transition temperature has resulted in competing predictions. To date, no experiment exists that can test these theories, partly due to the difficulty in aligning two superconductors in close proximity, while still allowing for a temperature-independent readout of the arising force between them. Here we present an on-chip platform based on an optomechanical cavity in combination with a grounded superconducting capacitor, which overcomes these challenges and opens up the possibility to probe modifications to the Casimir effect between two closely spaced, freestanding superconductors as they transition into a superconducting state. We also perform preliminary force measurements that demonstrate the capability of these devices to probe the interplay between two widely measured quantum effects: Casimir forces and superconductivity.
Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the magnitude of which increases monotonically as the separation decreases. By introducing nanoscale gratings to the surfaces, recent advances have opened opport
We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with
We study the role of surface polaritons in the zero-temperature Casimir effect between two graphene layers that are described by the Dirac model. A parametric approach allows us to accurately calculate the dispersion relations of the relevant modes a
We present a new approach to calculate the attractive long-range vortex-vortex interaction of the van der Waals type present in anisotropic and layered superconductors. The mapping of the statistical mechanics of two-dimensional charged bosons allows
We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual an