ﻻ يوجد ملخص باللغة العربية
Complete expressions of the thermal-expansion coefficient $alpha$ and the Gr{u}neisen parameter $Gamma$ are derived on the basis of the self-consistent renormalization (SCR) theory. By considering zero-point as well as thermal spin fluctuation under the stationary condition, the specific heat for each class of the magnetic quantum critical point (QCP) specified by the dynamical exponent $z=3$ (FM) and $z=2$ (AFM) and the spatial dimension ($d=3$ and $2$) is shown to be expressed as $C_{V}=C_a-C_b$, where $C_a$ is dominant at low temperatures, reproducing the past SCR criticality endorsed by the renormalization group theory. Starting from the explicit form of the entropy and using the Maxwell relation, $alpha=alpha_a+alpha_b$ (with $alpha_a$ and $alpha_b$ being related to $C_a$ and $C_b$, respectively) is derived, which is proven to be equivalent to $alpha$ derived from the free energy. The temperature-dependent coefficient found to exist in $alpha_b$, which is dominant at low temperatures, contributes to the crossover from the quantum-critical regime to the Curie-Weiss regime and even affects the quantum criticality at 2d AFM QCP. Based on these correctly calculated $C_{V}$ and $alpha$, Gr{u}neisen parameter $Gamma=Gamma_a+Gamma_b$ is derived, where $Gamma_a$ and $Gamma_b$ contain $alpha_a$ and $alpha_b$, respectively. The inverse susceptibility coupled to the volume $V$ in $Gamma_b$ gives rise to divergence of $Gamma$ at the QCP for each class even though characteristic energy scale of spin fluctuation $T_0$ is finite at the QCP, which gives a finite contribution in $Gamma_a=-frac{V}{T_0}left(frac{partial T_0}{partial V}right)_{T=0}$. General properties of $alpha$ and $Gamma$ including their signs as well as the relation to $T_0$ and the Kondo temperature in temperature-pressure phase diagrams of Ce- and Yb-based heavy electron systems are discussed.
The mechanism of not diverging Gr{u}neisen parameter in the quantum critical heavy-fermion quasicrystal (QC) Yb$_{15}$Al$_{34}$Au$_{51}$ is analyzed. We construct the formalism for calculating the specific heat $C_V(T)$, the thermal-expansion coeffic
Using Hartree-Fock-Bogoliubov (HFB) approach we obtained analytical expressions for thermodynamic quantities of the system of triplons in spin gapped quantum magnets such as magnetization, heat capacity and the magnetic Gr{u}neisen parameter $Gamma_H
Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. at 1984 (ref. 1), there has been considerable pr
In symmetry protected topological (SPT) phases, the combination of symmetries and a bulk gap stabilizes protected modes at surfaces or at topological defects. Understanding the fate of these modes at a quantum critical point, when the protecting symm
In solid state physics, the Gr{u}neisen parameter (GP), originally introduced in the study of the effect of changing the volume of a crystal lattice on its vibrational frequency, has been widely used to investigate the characteristic energy scales of