ﻻ يوجد ملخص باللغة العربية
Using Hartree-Fock-Bogoliubov (HFB) approach we obtained analytical expressions for thermodynamic quantities of the system of triplons in spin gapped quantum magnets such as magnetization, heat capacity and the magnetic Gr{u}neisen parameter $Gamma_H$. Near the critical temperature, $Gamma_H$ is discontinuous and changes its sign upon the Bose-Einstein condensation (BEC) of triplons. On the other hand, in the widely used Hartree-Fock-Popov (HFP) approach there is no discontinuity neither in the heat capacity nor in the Gr{u}neisen parameter. We predict that in the low-temperature limit and near the critical magnetic field $H_c$, $Gamma_H$ diverges as $Gamma_Hsim 1/T^{2}$, while it scales as $Gamma_Hsim 1/(H-H_c)$ as the magnetic field approaches the quantum critical point at $H_c$.
In solid state physics, the Gr{u}neisen parameter (GP), originally introduced in the study of the effect of changing the volume of a crystal lattice on its vibrational frequency, has been widely used to investigate the characteristic energy scales of
Complete expressions of the thermal-expansion coefficient $alpha$ and the Gr{u}neisen parameter $Gamma$ are derived on the basis of the self-consistent renormalization (SCR) theory. By considering zero-point as well as thermal spin fluctuation under
The mechanism of not diverging Gr{u}neisen parameter in the quantum critical heavy-fermion quasicrystal (QC) Yb$_{15}$Al$_{34}$Au$_{51}$ is analyzed. We construct the formalism for calculating the specific heat $C_V(T)$, the thermal-expansion coeffic
We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with adjustable wave vector, we measure th
In the last decade, quantum simulators, and in particular cold atoms in optical lattices, have emerged as a valuable tool to study strongly correlated quantum matter. These experiments are now reaching regimes that are numerically difficult or imposs