ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference of Binary Regime Models with Jump Discontinuities

110   0   0.0 ( 0 )
 نشر من قبل Anindya Goswami Mr.
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying the instances of jumps in a discrete time series sample of a jump diffusion model is a challenging task. We have developed a novel statistical technique for jump detection and volatility estimation in a return time series data using a threshold method. Since we derive the threshold and the volatility estimator simultaneously by solving an implicit equation, we obtain unprecedented accuracy across a wide range of parameter values. Using this method, the increments attributed to jumps have been removed from a large collection of historical data of Indian sectorial indices. Subsequently, we test the presence of regime switching dynamics in the volatility coefficient using a new discriminating statistic. The statistic is shown to be sensitive to the transition kernel of the regime switching model. We perform the testing using bootstrap method and find a clear indication of presence of multiple regimes of volatility in the data.



قيم البحث

اقرأ أيضاً

This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process, driving the values of interest rate and volatility coefficient. The pure jump process is assumed to be a semi-Markov process on finite state space. This consideration helps to incorporate a specific type of memory influence in the asset price. Under this model assumption, the locally risk minimizing price of the European type path-independent options is found. The F{o}llmer-Schweizer decomposition is adopted to show that the option price satisfies an evolution problem, as a function of time, stock price, market regime, and the stagnancy period. To be more precise, the evolution problem involves a linear, parabolic, degenerate and non-local system of integro-partial differential equations. We have established existence and uniqueness of classical solution to the evolution problem in an appropriate class.
In this paper we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alos (2012) for Heston (1993) SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models - models utilizing a variance process postulated by Heston (1993). In particular, we inspect in detail the approximation formula for the Bates (1996) model with log-normal jump sizes and we provide a numerical comparison with the industry standard - Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behaviour under a specific SVJ model.
We present an option pricing formula for European options in a stochastic volatility model. In particular, the volatility process is defined using a fractional integral of a diffusion process and both the stock price and the volatility processes have jumps in order to capture the market effect known as leverage effect. We show how to compute a martingale representation for the volatility process. Finally, using It^o calculus for processes with discontinuous trajectories, we develop a first order approximation formula for option prices. There are two main advantages in the usage of such approximating formulas to traditional pricing methods. First, to improve computational effciency, and second, to have a deeper understanding of the option price changes in terms of changes in the model parameters.
The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We gen eralize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.
In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Ri sk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا