ترغب بنشر مسار تعليمي؟ اضغط هنا

On properties of Continuous-Time Random Walks with Non-Poissonian jump-times

103   0   0.0 ( 0 )
 نشر من قبل Miquel Montero
 تاريخ النشر 2008
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We generalize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.



قيم البحث

اقرأ أيضاً

The usual development of the continuous time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper we address the theoretical setting of non-indep endent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case some interesting features arise such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
The study of record statistics of correlated series is gaining momentum. In this work, we study the records statistics of the time series of select stock market data and the geometric random walk, primarily through simulations. We show that the distr ibution of the age of records is a power law with the exponent $alpha$ lying in the range $1.5 le alpha le 1.8$. Further, the longest record ages follow the Fr{e}chet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that from the empirical stock data.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environmen ts, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
We investigated the topological properties of stock networks through a comparison of the original stock network with the estimated stock network from the correlation matrix created by the random matrix theory (RMT). We used individual stocks traded o n the market indices of Korea, Japan, Canada, the USA, Italy, and the UK. The results are as follows. As the correlation matrix reflects the more eigenvalue property, the estimated stock network from the correlation matrix gradually increases the degree of consistency with the original stock network. Each stock with a different number of links to other stocks in the original stock network shows a different response. In particular, the largest eigenvalue is a significant deterministic factor in terms of the formation of a stock network.
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b iased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process `{it space-time Mittag-Leffler process}. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a `well-scaled diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the `state density kernel solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا