ترغب بنشر مسار تعليمي؟ اضغط هنا

Option Pricing in a Regime Switching Jump Diffusion Model

103   0   0.0 ( 0 )
 نشر من قبل Anindya Goswami Mr.
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process, driving the values of interest rate and volatility coefficient. The pure jump process is assumed to be a semi-Markov process on finite state space. This consideration helps to incorporate a specific type of memory influence in the asset price. Under this model assumption, the locally risk minimizing price of the European type path-independent options is found. The F{o}llmer-Schweizer decomposition is adopted to show that the option price satisfies an evolution problem, as a function of time, stock price, market regime, and the stagnancy period. To be more precise, the evolution problem involves a linear, parabolic, degenerate and non-local system of integro-partial differential equations. We have established existence and uniqueness of classical solution to the evolution problem in an appropriate class.



قيم البحث

اقرأ أيضاً

In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been s uccessfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finit ely many age-dependent semi-Markov processes. We further allow the volatility coefficient to depend on time explicitly. Under these market assumptions, we study locally risk minimizing pricing of a class of European options. It is shown that the price function can be obtained by solving a non-local B-S-M type PDE. We establish existence and uniqueness of a classical solution of the Cauchy problem. We also find another characterization of price function via a system of Volterra integral equation of second kind. This alternative representation leads to computationally efficient methods for finding price and hedging. Finally, we analyze the PDE to establish continuous dependence of the solution on the instantaneous transition rates of semi-Markov processes. An explicit expression of quadratic residual risk is also obtained.
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa lly efficient method for obtaining the probability distribution of average integrated variance (AIV), which is key to option pricing under stochastic-volatility-type models. Building upon the efficiency of the European option pricing approach, we are able to price an American-style option, by converting its pricing into the pricing of a portfolio of European options. Our work also provides constructive guidance for analyzing derivatives based on variance, e.g., the variance swap. Numerical results indicate our methods can be implemented very efficiently and accurately.
In an observed generalized semi-Markov regime, estimation of transition rate of regime switching leads towards calculation of locally risk minimizing option price. Despite the uniform convergence of estimated step function of transition rate, to meet the existence of classical solution of the modified price equation, the estimator is approximated in the class of smooth functions and furthermore, the convergence is established. Later, the existence of the solution of the modified price equation is verified and the point-wise convergence of such approximation of option price is proved to answer the tractability of its application in Finance. To demonstrate the consistency in result a numerical experiment has been reported.
A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا