ﻻ يوجد ملخص باللغة العربية
Users often have to integrate information about entities from multiple data sources. This task is challenging as each data source may represent information about the same entity in a distinct form, e.g., each data source may use a different name for the same person. Currently, data from different representations are translated into a unified one via lengthy and costly expert attention and tuning. Such methods cannot scale to the rapidly increasing number and variety of available data sources. We demonstrate ProgMap, a entity-matching framework in which data sources learn to collaborate and integrate information about entities on-demand and with minimal expert intervention. The data sources leverage user feedback to improve the accuracy of their collaboration and results. ProgMap also has techniques to reduce the amount of required user feedback to achieve effective matchings.
We consider the problems of finding and determining certain query answers and of determining containment between queries; each problem is formulated in presence of materialized views and dependencies under the closed-world assumption. We show a tight
Entity alignment (EA) aims to find equivalent entities in different knowledge graphs (KGs). Current EA approaches suffer from scalability issues, limiting their usage in real-world EA scenarios. To tackle this challenge, we propose LargeEA to align e
Multilingual knowledge graphs (KGs), such as YAGO and DBpedia, represent entities in different languages. The task of cross-lingual entity alignment is to match entities in a source language with their counterparts in target languages. In this work,
In this paper, we consider networks of deterministic spiking neurons, firing synchronously at discrete times; such spiking neural networks are inspired by networks of neurons and synapses that occur in brains. We consider the problem of translating t
This paper presents to integrate the auxiliary information (e.g., additional attributes for data such as the hashtags for Instagram images) in the self-supervised learning process. We first observe that the auxiliary information may bring us useful i