ترغب بنشر مسار تعليمي؟ اضغط هنا

Obtaining Information about Queries behind Views and Dependencies

254   0   0.0 ( 0 )
 نشر من قبل Rada Chirkova
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problems of finding and determining certain query answers and of determining containment between queries; each problem is formulated in presence of materialized views and dependencies under the closed-world assumption. We show a tight relationship between the problems in this setting. Further, we introduce algorithms for solving each problem for those inputs where all the queries and views are conjunctive, and the dependencies are embedded weakly acyclic. We also determine the complexity of each problem under the security-relevant complexity measure introduced by Zhang and Mendelzon in 2005. The problems studied in this paper are fundamental in ensuring correct specification of database access-control policies, in particular in case of fine-grained access control. Our approaches can also be applied in the areas of inference control, secure data publishing, and database auditing.



قيم البحث

اقرأ أيضاً

Unstructured enterprise data such as reports, manuals and guidelines often contain tables. The traditional way of integrating data from these tables is through a two-step process of table detection/extraction and mapping the table layouts to an appro priate schema. This can be an expensive process. In this paper we show that by using semantic technologies (RDF/SPARQL and database dependencies) paired with a simple but powerful way to transform tables with non-relational layouts, it is possible to offer query answering services over these tables with minimal manual work or domain-specific mappings. Our method enables users to exploit data in tables embedded in documents with little effort, not only for simple retrieval queries, but also for structured queries that require joining multiple interrelated tables.
We consider the problem of finding equivalent minimal-size reformulations of SQL queries in presence of embedded dependencies [1]. Our focus is on select-project-join (SPJ) queries with equality comparisons, also known as safe conjunctive (CQ) querie s, possibly with grouping and aggregation. For SPJ queries, the semantics of the SQL standard treat query answers as multisets (a.k.a. bags), whereas the stored relations may be treated either as sets, which is called bag-set semantics for query evaluation, or as bags, which is called bag semantics. (Under set semantics, both query answers and stored relations are treated as sets.) In the context of the above Query-Reformulation Problem, we develop a comprehensive framework for equivalence of CQ queries under bag and bag-set semantics in presence of embedded dependencies, and make a number of conceptual and technical contributions. Specifically, we develop equivalence tests for CQ queries in presence of arbitrary sets of embedded dependencies under bag and bag-set semantics, under the condition that chase [9] under set semantics (set-chase) on the inputs terminates. We also present equivalence tests for aggregate CQ queries in presence of embedded dependencies. We use our equivalence tests to develop sound and complete (whenever set-chase on the inputs terminates) algorithms for solving instances of the Query-Reformulation Problem with CQ queries under each of bag and bag-set semantics, as well as for instances of the problem with aggregate queries.
Graph data models have recently become popular owing to their applications, e.g., in social networks and the semantic web. Typical navigational query languages over graph databases - such as Conjunctive Regular Path Queries (CRPQs) - cannot express r elevant properties of the interaction between the underlying data and the topology. Two languages have been recently proposed to overcome this problem: walk logic (WL) and regular expressions with memory (REM). In this paper, we begin by investigating fundamental properties of WL and REM, i.e., complexity of evaluation problems and expressive power. We first show that the data complexity of WL is nonelementary, which rules out its practicality. On the other hand, while REM has low data complexity, we point out that many natural data/topology properties of graphs expressible in WL cannot be expressed in REM. To this end, we propose register logic, an extension of REM, which we show to be able to express many natural graph properties expressible in WL, while at the same time preserving the elementariness of data complexity of REMs. It is also incomparable to WL in terms of expressive power.
Structural decomposition methods have been developed for identifying tractable classes of instances of fundamental problems in databases, such as conjunctive queries and query containment, of the constraint satisfaction problem in artificial intellig ence, or more generally of the homomorphism problem over relational structures. Most structural decomposition methods can be characterized through hypergraph games that are variations of the Robber and Cops graph game that characterizes the notion of treewidth. In particular, decomposition trees somehow correspond to monotone winning strategies, where the escape space of the robber on the hypergraph is shrunk monotonically by the cops. In fact, unlike the treewidth case, there are hypergraphs where monotonic strategies do not exist, while the robber can be captured by means of more complex non-monotonic strategies. However, these powerful strategies do not correspond in general to valid decompositions. The paper provides a general way to exploit the power of non-monotonic strategies, by allowing a disciplined form of non-monotonicity, characteristic of cops playing in a greedy way. It is shown that deciding the existence of a (non-monotone) greedy winning strategy (and compute one, if any) is tractable. Moreover, despite their non-monotonicity, such strategies always induce valid decomposition trees, which can be computed efficiently based on them. As a consequence, greedy strategies allow us to define new islands of tractability for the considered problems properly including all previously known classes of tractable instances.
We investigate the query evaluation problem for fixed queries over fully dynamic databases, where tuples can be inserted or deleted. The task is to design a dynamic algorithm that immediately reports the new result of a fixed query after every databa se update. We consider queries in first-order logic (FO) and its extension with modulo-counting quantifiers (FO+MOD), and show that they can be efficiently evaluated under updates, provided that the dynamic database does not exceed a certain degree bound. In particular, we construct a data structure that allows to answer a Boolean FO+MOD query and to compute the size of the result of a non-Boolean query within constant time after every database update. Furthermore, after every update we are able to immediately enumerate the new query result with constant delay between the output tuples. The time needed to build the data structure is linear in the size of the database. Our results extend earlier work on the evaluation of first-order queries on static databases of bounded degree and rely on an effective Hanf normal form for FO+MOD recently obtained by Heimberg, Kuske, and Schweikardt (LICS 2016).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا