ﻻ يوجد ملخص باللغة العربية
Magnetic topological insulators (TIs) with nontrivial topological electronic structure and broken time-reversal symmetry exhibit various exotic topological quantum phenomena. The realization of such exotic phenomena at high temperature is one of central topics in this area. We reveal that MnBi6Te10 is a magnetic TI with an antiferromagnetic ground state below 10.8 K whose nontrivial topology is manifested by Dirac-like surface states. The ferromagnetic axion insulator state with Z4 = 2 emerges once spins polarized at field as low as 0.1 T, accompanied with saturated anomalous Hall resistivity up to 10 K. Such a ferromagnetic state is preserved even external field down to zero at 2 K. Theoretical calculations indicate that the few-layer ferromagnetic MnBi6Te10 is also topologically nontrivial with a non-zero Chern number. Angle-resolved photoemission spectroscopy experiments further reveal three types of Dirac surface states arising from different terminations on the cleavage surfaces, one of which has insulating behavior with an energy gap of ~ 28 meV at the Dirac point. These outstanding features suggest that MnBi6Te10 is a promising system to realize various topological quantum effects at zero field and high temperature.
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrin
In magnetic topological insulators (TIs), the interplay between magnetic order and nontrivial topology can induce fascinating topological quantum phenomena, such as the quantum anomalous Hall effect, chiral Majorana fermions and axion electrodynamics
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion
We report an above-room-temperature ferromagnetic state realized in a proximitized Dirac semimetal, which is fabricated by growing typical Dirac semimetal Cd$_3$As$_2$ films on a ferromagnetic garnet with strong perpendicular magnetization. Observed
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho