ﻻ يوجد ملخص باللغة العربية
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrinsic antiferromagnetic (AFM) topological insulator. We observe both bulk and surface bands in the electronic spectra, in reasonable agreement with the DFT calculations results. In striking contrast to the earlier literatures showing a full gap opening between two surface band manifolds along (0001) direction, we observed a gapless Dirac cone remain protected in MnBi2Te4 across the AFM transition (TN = 24 K). Our data also reveal the existence of a second Dirac cone closer to the Fermi level, predicted by band structure calculations. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering, we do observe splitting of the bulk band that develops below the TN . Having a moderately high ordering temperature, MnBi2Te4 provides a unique platform for studying the interplay between topology and magnetic ordering.
Magnetic topological quantum materials (TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic (AFM) topological insulator MnBi2Te4 that could reali
Through a thorough magneto-transport study of antiferromagnetic topological insulator MnBi2Te4 (MBT) thick films, a positive linear magnetoresistance (LMR) with a two-dimensional (2D) character is found in high perpendicular magnetic fields and tempe
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synth
Magnetic topological insulators (TIs) with nontrivial topological electronic structure and broken time-reversal symmetry exhibit various exotic topological quantum phenomena. The realization of such exotic phenomena at high temperature is one of cent
Topological quantum materials coupled with magnetism can provide a platform for realizing rich exotic physical phenomena, including quantum anomalous Hall effect, axion electrodynamics and Majorana fermions. However, these unusual effects typically r