ﻻ يوجد ملخص باللغة العربية
This work investigates the framework and performance issues of the composite neural network, which is composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph for solving complicated applications. A pre-trained neural network model is generally well trained, targeted to approximate a specific function. Despite a general belief that a composite neural network may perform better than a single component, the overall performance characteristics are not clear. In this work, we construct the framework of a composite network, and prove that a composite neural network performs better than any of its pre-trained components with a high probability bound. In addition, if an extra pre-trained component is added to a composite network, with high probability, the overall performance will not be degraded. In the study, we explore a complicated application -- PM2.5 prediction -- to illustrate the correctness of the proposed composite network theory. In the empirical evaluations of PM2.5 prediction, the constructed composite neural network models support the proposed theory and perform better than other machine learning models, demonstrate the advantages of the proposed framework.
This work theoretically investigates the performance of a composite neural network. A composite neural network is a rooted directed acyclic graph combining a set of pre-trained and non-instantiated neural network models, where a pre-trained neural ne
The troposphere is one of the atmospheric layers where most weather phenomena occur. Temperature variations in the troposphere, especially at 500 hPa, a typical level of the middle troposphere, are significant indicators of future weather changes. Nu
In this paper, we study the problem of using representation learning to assist information diffusion prediction on graphs. In particular, we aim at estimating the probability of an inactive node to be activated next in a cascade. Despite the success
We developed a convolution neural network (CNN) on semi-regular triangulated meshes whose vertices have 6 neighbours. The key blocks of the proposed CNN, including convolution and down-sampling, are directly defined in a vertex domain. By exploiting
Sophisticated trajectory prediction models that effectively mimic team dynamics have many potential uses for sports coaches, broadcasters and spectators. However, through experiments on soccer data we found that it can be surprisingly challenging to