ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Neural Network: Theory and Application to PM2.5 Prediction

70   0   0.0 ( 0 )
 نشر من قبل Ming-Chuan Yang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This work investigates the framework and performance issues of the composite neural network, which is composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph for solving complicated applications. A pre-trained neural network model is generally well trained, targeted to approximate a specific function. Despite a general belief that a composite neural network may perform better than a single component, the overall performance characteristics are not clear. In this work, we construct the framework of a composite network, and prove that a composite neural network performs better than any of its pre-trained components with a high probability bound. In addition, if an extra pre-trained component is added to a composite network, with high probability, the overall performance will not be degraded. In the study, we explore a complicated application -- PM2.5 prediction -- to illustrate the correctness of the proposed composite network theory. In the empirical evaluations of PM2.5 prediction, the constructed composite neural network models support the proposed theory and perform better than other machine learning models, demonstrate the advantages of the proposed framework.



قيم البحث

اقرأ أيضاً

This work theoretically investigates the performance of a composite neural network. A composite neural network is a rooted directed acyclic graph combining a set of pre-trained and non-instantiated neural network models, where a pre-trained neural ne twork model is well-crafted for a specific task and targeted to approximate a specific function with instantiated weights. The advantages of adopting such a pre-trained model in a composite neural network are two folds. One is to benefit from others intelligence and diligence, and the other is saving the efforts in data preparation and resources and time in training. However, the overall performance of composite neural network is still not clear. In this work, we prove that a composite neural network, with high probability, performs better than any of its pre-trained components under certain assumptions. In addition, if an extra pre-trained component is added to a composite network, with high probability the overall performance will be improved. In the empirical evaluations, distinctively different applications support the above findings.
The troposphere is one of the atmospheric layers where most weather phenomena occur. Temperature variations in the troposphere, especially at 500 hPa, a typical level of the middle troposphere, are significant indicators of future weather changes. Nu merical weather prediction is effective for temperature prediction, but its computational complexity hinders a timely response. This paper proposes a novel temperature prediction approach in framework ofphysics-informed deep learning. The new model, called PGnet, builds upon a generative neural network with a mask matrix. The mask is designed to distinguish the low-quality predicted regions generated by the first physical stage. The generative neural network takes the mask as prior for the second-stage refined predictions. A mask-loss and a jump pattern strategy are developed to train the generative neural network without accumulating errors during making time-series predictions. Experiments on ERA5 demonstrate that PGnet can generate more refined temperature predictions than the state-of-the-art.
In this paper, we study the problem of using representation learning to assist information diffusion prediction on graphs. In particular, we aim at estimating the probability of an inactive node to be activated next in a cascade. Despite the success of recent deep learning methods for diffusion, we find that they often underexplore the cascade structure. We consider a cascade as not merely a sequence of nodes ordered by their activation time stamps; instead, it has a richer structure indicating the diffusion process over the data graph. As a result, we introduce a new data model, namely diffusion topologies, to fully describe the cascade structure. We find it challenging to model diffusion topologies, which are dynamic directed acyclic graphs (DAGs), with the existing neural networks. Therefore, we propose a novel topological recurrent neural network, namely Topo-LSTM, for modeling dynamic DAGs. We customize Topo-LSTM for the diffusion prediction task, and show it improves the state-of-the-art baselines, by 20.1%--56.6% (MAP) relatively, across multiple real-world data sets. Our code and data sets are available online at https://github.com/vwz/topolstm.
103 - Caoqiang Liu , Hui Ji , Anqi Qiu 2019
We developed a convolution neural network (CNN) on semi-regular triangulated meshes whose vertices have 6 neighbours. The key blocks of the proposed CNN, including convolution and down-sampling, are directly defined in a vertex domain. By exploiting the ordering property of semi-regular meshes, the convolution is defined on a vertex domain with strong motivation from the spatial definition of classic convolution. Moreover, the down-sampling of a semi-regular mesh embedded in a 3D Euclidean space can achieve a down-sampling rate of 4, 16, 64, etc. We demonstrated the use of this vertex-based graph CNN for the classification of mild cognitive impairment (MCI) and Alzheimers disease (AD) based on 3169 MRI scans of the Alzheimers Disease Neuroimaging Initiative (ADNI). We compared the performance of the vertex-based graph CNN with that of the spectral graph CNN.
Sophisticated trajectory prediction models that effectively mimic team dynamics have many potential uses for sports coaches, broadcasters and spectators. However, through experiments on soccer data we found that it can be surprisingly challenging to train a deep learning model for player trajectory prediction which outperforms linear extrapolation on average distance between predicted and true future trajectories. We propose and test a novel method for improving training by predicting a sparse trajectory and interpolating using constant acceleration, which improves performance for several models. This interpolation can also be used on models that arent trained with sparse outputs, and we find that this consistently improves performance for all tested models. Additionally, we find that the accuracy of predicted trajectories for a subset of players can be improved by conditioning on the full trajectories of the other players, and that this is further improved when combined with sparse predictions. We also propose a novel architecture using graph networks and multi-head attention (GraN-MA) which achieves better performance than other tested state-of-the-art models on our dataset and is trivially adapted for both sparse trajectories and full-trajectory conditioned trajectory prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا