ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Network on Semi-Regular Triangulated Meshes and its Application to Brain Image Data

104   0   0.0 ( 0 )
 نشر من قبل Anqi Qiu DR
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed a convolution neural network (CNN) on semi-regular triangulated meshes whose vertices have 6 neighbours. The key blocks of the proposed CNN, including convolution and down-sampling, are directly defined in a vertex domain. By exploiting the ordering property of semi-regular meshes, the convolution is defined on a vertex domain with strong motivation from the spatial definition of classic convolution. Moreover, the down-sampling of a semi-regular mesh embedded in a 3D Euclidean space can achieve a down-sampling rate of 4, 16, 64, etc. We demonstrated the use of this vertex-based graph CNN for the classification of mild cognitive impairment (MCI) and Alzheimers disease (AD) based on 3169 MRI scans of the Alzheimers Disease Neuroimaging Initiative (ADNI). We compared the performance of the vertex-based graph CNN with that of the spectral graph CNN.

قيم البحث

اقرأ أيضاً

This work investigates the framework and performance issues of the composite neural network, which is composed of a collection of pre-trained and non-instantiated neural network models connected as a rooted directed acyclic graph for solving complica ted applications. A pre-trained neural network model is generally well trained, targeted to approximate a specific function. Despite a general belief that a composite neural network may perform better than a single component, the overall performance characteristics are not clear. In this work, we construct the framework of a composite network, and prove that a composite neural network performs better than any of its pre-trained components with a high probability bound. In addition, if an extra pre-trained component is added to a composite network, with high probability, the overall performance will not be degraded. In the study, we explore a complicated application -- PM2.5 prediction -- to illustrate the correctness of the proposed composite network theory. In the empirical evaluations of PM2.5 prediction, the constructed composite neural network models support the proposed theory and perform better than other machine learning models, demonstrate the advantages of the proposed framework.
Semi-supervised learning algorithms typically construct a weighted graph of data points to represent a manifold. However, an explicit graph representation is problematic for neural networks operating in the online setting. Here, we propose a feed-for ward neural network capable of semi-supervised learning on manifolds without using an explicit graph representation. Our algorithm uses channels that represent localities on the manifold such that correlations between channels represent manifold structure. The proposed neural network has two layers. The first layer learns to build a representation of low-dimensional manifolds in the input data as proposed recently in [8]. The second learns to classify data using both occasional supervision and similarity of the manifold representation of the data. The channel carrying label information for the second layer is assumed to be silent most of the time. Learning in both layers is Hebbian, making our network design biologically plausible. We experimentally demonstrate the effect of semi-supervised learning on non-trivial manifolds.
The incidence of Acute Kidney Injury (AKI) commonly happens in the Intensive Care Unit (ICU) patients, especially in the adults, which is an independent risk factor affecting short-term and long-term mortality. Though researchers in recent years high light the early prediction of AKI, the performance of existing models are not precise enough. The objective of this research is to precisely predict AKI by means of Convolutional Neural Network on Electronic Health Record (EHR) data. The data sets used in this research are two public Electronic Health Record (EHR) databases: MIMIC-III and eICU database. In this study, we take several Convolutional Neural Network models to train and test our AKI predictor, which can precisely predict whether a certain patient will suffer from AKI after admission in ICU according to the last measurements of the 16 blood gas and demographic features. The research is based on Kidney Disease Improving Global Outcomes (KDIGO) criteria for AKI definition. Our work greatly improves the AKI prediction precision, and the best AUROC is up to 0.988 on MIMIC-III data set and 0.936 on eICU data set, both of which outperform the state-of-art predictors. And the dimension of the input vector used in this predictor is much fewer than that used in other existing researches. Compared with the existing AKI predictors, the predictor in this work greatly improves the precision of early prediction of AKI by using the Convolutional Neural Network architecture and a more concise input vector. Early and precise prediction of AKI will bring much benefit to the decision of treatment, so it is believed that our work is a very helpful clinical application.
Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5% - +84.2%) than the original GCN model.
In this paper, we propose a novel progressive parameter pruning method for Convolutional Neural Network acceleration, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Un like existing deterministic pruning approaches, where unimportant weights are permanently eliminated, SPP introduces a pruning probability for each weight, and pruning is guided by sampling from the pruning probabilities. A mechanism is designed to increase and decrease pruning probabilities based on importance criteria in the training process. Experiments show that, with 4x speedup, SPP can accelerate AlexNet with only 0.3% loss of top-5 accuracy and VGG-16 with 0.8% loss of top-5 accuracy in ImageNet classification. Moreover, SPP can be directly applied to accelerate multi-branch CNN networks, such as ResNet, without specific adaptations. Our 2x speedup ResNet-50 only suffers 0.8% loss of top-5 accuracy on ImageNet. We further show the effectiveness of SPP on transfer learning tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا