ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct temporal mode measurement of photon pairs by stimulated emission

112   0   0.0 ( 0 )
 نشر من قبل Zhe-Yu Jeff Ou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described by independent temporal modes and form a multi-temporal mode entangled state. However, the exact form of the temporal modes is not known even though the joint spectral intensity of photon pairs can be measured by the method of stimulated emission tomography. In this paper, we describe a feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the independent temporal modes for the temporally entangled photon pairs.



قيم البحث

اقرأ أيضاً

Third-order parametric down-conversion (TOPDC) describes a class of nonlinear interactions in which a pump photon is converted into a photon triplet. This process can occur spontaneously, or it can be stimulated by seeding fields. In the former case, one typically has the generation of non-Gaussian states of light. In the latter, the situation is more variegated, for stimulated TOPDC (StTOPDC) can be implemented in many ways, depending on the number and properties of the seeding fields. Here we show that StTOPDC can be exploited for the generation of quantum correlated photon pairs. We examine the peculiar features of this approach when compared with second-order spontaneous parametric down-conversion and spontaneous four-wave mixing. We model StTOPDC in a microring resonator, predicting observable generation rates in a microring engineered for third-harmonic generation. We conclude that if the experimental difficulties associated with implementing StTOPDC can be overcome, it may soon be possible to demonstrate this process in resonant integrated devices.
The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical realizations, stable, miniaturized, low-cost devices are required. Sources with one or some of above performances have been demonstrated already, but it is quite challenging to have a source with all of the described characteristics simultaneously. Here we report on an integrated single-longitudinal-mode non-degenerate narrowband photon pair source, which exhibits all requirements needed for quantum applications. The device is composed of a periodically poled Ti-indiffused lithium niobate waveguide with high reflective dielectric mirror coatings deposited on the waveguide end-faces. Photon pairs with wavelengths around 890 nm and 1320 nm are generated via type II phase-matched parametric down-conversion. Clustering in this dispersive cavity restricts the whole conversion spectrum to one single-longitudinal-mode in a single cluster yielding a narrow bandwidth of only 60 MHz. The high conversion efficiency in the waveguide, together with the spectral clustering in the doubly resonant waveguide, leads to a high brightness of $3times10^4~$pairs/(s$cdot$mW$cdot$MHz). This source exhibits prominent single-longitudinal-mode purity and remarkable temporal shaping capability. Especially, due to temporal broadening, we can observe that the coherence time of the two-photon component of PDC state is actually longer than the one of the single photon states. The miniaturized monolithic design makes this source have various fiber communication applications.
We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium, and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics, and holds promise for quantum control of nanoplasmonic devices.
Frequency non-degenerate entangled photon pairs have been employed in quantum communication, imaging, and sensing. To characterize quantum entangled state with long-wavelength (infrared, IR or even terahertz, THz) photon, one needs to either develop the single-photon detectors at the corresponding wavelengths or use novel tomography technique, which does not rely on single-photon detections, such as stimulated emission tomography (SET). We use standard quantum state tomography and SET to measure the density matrix of entangled photon pairs, with one photon at 1550 nm and the other one at 810 nm, and obtain highly consistent results, showing the reliability of SET. Our work paves the way for efficient measurement of entangled photons with highly dissimilar frequencies, even to the frequencies where single-photon detections are not available.
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-sta te quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا