ﻻ يوجد ملخص باللغة العربية
We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium, and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics, and holds promise for quantum control of nanoplasmonic devices.
Nonlinear optical microscopy techniques have emerged as a set of successful tools for biological imaging. Stimulated emission microscopy belongs to a small subset of pump-probe techniques which can image non-fluorescent samples without requiring fluo
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil
It is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described by independent temporal modes and form a multi-temporal mode entangled state. However, the exact form of the temporal modes is not known even
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical chal- lenges inevitable in conventional solid-sta
We theoretically demonstrate coherent control over propagation of surface plasmon polaritons(SPP), at both telecommunication and visible wavelengths, on a metallic surface adjacent to quantum coherence (phaseonium) medium composed of three-level quan