ﻻ يوجد ملخص باللغة العربية
We present large scale 3D particle-in-cell (PIC) simulations to examine particle energization in magnetic reconnection of relativistic electron-positron (pair) plasmas. The initial configuration is set up as a relativistic Harris equilibrium without a guide field. These simulations are large enough to accommodate a sufficient number of tearing and kink modes. Contrary to the non-relativistic limit, the linear tearing instability is faster than the linear kink instability, at least in our specific parameters. We find that the magnetic energy dissipation is first facilitated by the tearing instability and followed by the secondary kink instability. Particles are mostly energized inside the magnetic islands during the tearing stage due to the spatially varying electric fields produced by the outflows from reconnection. Secondary kink instability leads to additional particle acceleration. Accelerated particles are, however, observed to be thermalized quickly. The large amplitude of the vertical magnetic field resulting from the tearing modes by the secondary kink modes further help thermalizing the non-thermal particles generated from the secondary kink instability. Implications of these results for astrophysics are briefly discussed.
During magnetically dominated relativistic reconnection, inflowing plasma depletes the initial relativistic pressure at the x-line and collisionless plasma heating inside the diffusion region is insufficient to overcome this loss. The resulting press
Particle-in-cell (PIC) simulations have shown that relativistic collisionless magnetic reconnection drives nonthermal particle acceleration (NTPA), potentially explaining high-energy (X-ray/$gamma$-ray) synchrotron and/or inverse Compton (IC) radiati
Magnetic reconnection in strongly magnetized astrophysical plasma environments is believed to be the primary process for fast energy release and particle energization. Currently there is strong interest in relativistic magnetic reconnection, in that
Particle acceleration in the magnetic reconnection of electron-positron plasmas is studied by using a particle-in-cell simulation. It is found that a significantly large number of nonthermal particles are generated by the inductive electric fields ar
Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream m