ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks

99   0   0.0 ( 0 )
 نشر من قبل Mert G\\\"urb\\\"uzbalaban
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study distributed stochastic gradient (D-SG) method and its accelerated variant (D-ASG) for solving decentralized strongly convex stochastic optimization problems where the objective function is distributed over several computational units, lying on a fixed but arbitrary connected communication graph, subject to local communication constraints where noisy estimates of the gradients are available. We develop a framework which allows to choose the stepsize and the momentum parameters of these algorithms in a way to optimize performance by systematically trading off the bias, variance, robustness to gradient noise and dependence to network effects. When gradients do not contain noise, we also prove that distributed accelerated methods can emph{achieve acceleration}, requiring $mathcal{O}(kappa log(1/varepsilon))$ gradient evaluations and $mathcal{O}(kappa log(1/varepsilon))$ communications to converge to the same fixed point with the non-accelerated variant where $kappa$ is the condition number and $varepsilon$ is the target accuracy. To our knowledge, this is the first acceleration result where the iteration complexity scales with the square root of the condition number in the context of emph{primal} distributed inexact first-order methods. For quadratic functions, we also provide finer performance bounds that are tight with respect to bias and variance terms. Finally, we study a multistage version of D-ASG with parameters carefully varied over stages to ensure exact $mathcal{O}(-k/sqrt{kappa})$ linear decay in the bias term as well as optimal $mathcal{O}(sigma^2/k)$ in the variance term. We illustrate through numerical experiments that our approach results in practical algorithms that are robust to gradient noise and that can outperform existing methods.



قيم البحث

اقرأ أيضاً

This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an $O(mu)-$neighborhood of the true penalized optimizer.
98 - Kun Huang , Shi Pu 2021
We consider the distributed optimization problem where $n$ agents each possessing a local cost function, collaboratively minimize the average of the $n$ cost functions over a connected network. Assuming stochastic gradient information is available, w e study a distributed stochastic gradient algorithm, called exact diffusion with adaptive stepsizes (EDAS) adapted from the Exact Diffusion method and NIDS and perform a non-asymptotic convergence analysis. We not only show that EDAS asymptotically achieves the same network independent convergence rate as centralized stochastic gradient descent (SGD) for minimizing strongly convex and smooth objective functions, but also characterize the transient time needed for the algorithm to approach the asymptotic convergence rate, which behaves as $K_T=mathcal{O}left(frac{n}{1-lambda_2}right)$, where $1-lambda_2$ stands for the spectral gap of the mixing matrix. To the best of our knowledge, EDAS achieves the shortest transient time when the average of the $n$ cost functions is strongly convex and each cost function is smooth. Numerical simulations further corroborate and strengthen the obtained theoretical results.
139 - Yan Yan , Yi Xu , Qihang Lin 2020
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it ob jective gap}. However, its extension to solving stochastic min-max problems with strong convexity and strong concavity still remains open, and it is still unclear whether a fast rate of $O(1/T)$ for the {it duality gap} is achievable for stochastic min-max optimization under strong convexity and strong concavity. Although some recent studies have proposed stochastic algorithms with fast convergence rates for min-max problems, they require additional assumptions about the problem, e.g., smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max problems, without imposing any additional assumption about smoothness or the functions structure. To the best of our knowledge, our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O(1/T)$ for the duality gap of general SCSC min-max problems. We emphasize that such generalization of Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC min-max problems is non-trivial and requires novel technical analysis. Moreover, we notice that the key lemma can also be used for proving the convergence of Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to a nearly optimal complexity without resorting to smoothness or other structural conditions.
Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an $epsilon$-stationary point with $mathcal{O}(epsilon^{-3})$ IFOs in the online case, and $mathcal{O}(n+sqrt{n}epsilon^{-3})$ IFOs in the finite-sum case with $n$ being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that uses Riemannian subgradient information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا