ﻻ يوجد ملخص باللغة العربية
Neutrinos are believed to have a key role in the explosion mechanism of core-collapse supernovae as they carry most of the energy released by the gravitational collapse of a massive star. If their flavor is converted fast inside the neutrino sphere, the supernova explosion may be influenced. This paper is reporting the results of the extended work of our previous paper. We perform a thorough survey of the ELN crossing in one of our self-consistent, realistic Boltzmann simulations in two spatial dimensions under axisymmetry for the existence of the crossings between $ u_e$ and $bar u_e$ angular distributions, or the electron lepton number (ELN) crossing. We report for the first time the positive detections deep inside the core of the massive star in the vicinity of neutrino sphere at $r$ $approx$ 16 - 21 km. We find that low values of the electron fraction $Y_e$ produced by convective motions together with the appearance of light elements are critically important to give rise to the ELN crossing by enhancing the chemical potential difference between proton and neutron, and hence by mitigating the Fermi-degeneracy of $ u_e$. Since the region of positive detection are sustained and, in fact, expanding with time, it may have an impact on the explosion of core-collapse supernovae, observational neutrino astronomy and nucleosynthesis of heavy nuclei.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those
We have explored the impact of sterile neutrino dark matter on core-collapse supernova explosions. We have included oscillations between electron neutrinos or mixed $mu,tau$ neutrinos and right-handed sterile neutrinos into a supernova model. We have
For a suite of fourteen core-collapse models during the dynamical first second after bounce, we calculate the detailed neutrino light curves expected in the underground neutrino observatories Super-Kamiokande, DUNE, JUNO, and IceCube. These results a
We present a broadband spectrum of gravitational waves from core-collapse supernovae (CCSNe) sourced by neutrino emission asymmetries for a series of full 3D simulations. The associated gravitational wave strain probes the long-term secular evolution
We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six dimensional (6D) phase space. Adopting representative snapshots of the post-