ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-dimensional Features of Neutrino Transfer in Core-Collapse Supernovae

97   0   0.0 ( 0 )
 نشر من قبل Kohsuke Sumiyoshi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six dimensional (6D) phase space. Adopting representative snapshots of the post-bounce core from other supernova simulations in three dimensions, we solve the temporal evolutions to stationary states of neutrino distribution functions by our Boltzmann solver. Taking advantage of the multi-angle and multi-energy feature realized by the S$_n$ method in our code, we reveal the genuine characteristics of spatially three dimensional (3D) neutrino transfer such as non-radial fluxes and non-diagonal Eddington tensors. In addition, we assess the ray-by-ray approximation, turning off the lateral-transport terms in our code. We demonstrate that the ray-by-ray approximation tends to propagate fluctuations in thermodynamical states around the neutrino-sphere along each radial ray and overestimate the variations between the neutrino distributions on different radial rays. We find that the difference in the densities and fluxes of neutrinos between the ray-by-ray approximation and the full Boltzmann transport becomes ~20%, which is also the case for the local heating rate, whereas the volume-integrated heating rate in the Boltzmann transport is found to be only slightly larger (~2%) than the counterpart in the ray-by-ray approximation due to cancellation among different rays. These results suggest that we had better assess carefully the possible influences of various approximations in the neutrino transfer employed in the current simulations on supernova dynamics. Detailed information on the angle and energy moments of neutrino distribution functions will be profitable for the future development of numerical methods in neutrino-radiation hydrodynamics.

قيم البحث

اقرأ أيضاً

Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a ne utrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about the nature of the three dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre e neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
We develop a numerical code to calculate the neutrino transfer with multi-energy and multi-angle in three dimensions (3D) for the study of core-collapse supernovae. The numerical code solves the Boltzmann equations for neutrino distributions by the d iscrete-ordinate (S_n) method with a fully implicit differencing for time advance. The Boltzmann equations are formulated in the inertial frame with collision terms being evaluated to the zeroth order of v/c. A basic set of neutrino reactions for three neutrino species is implemented together with a realistic equation of state of dense matter. The pair process is included approximately in order to keep the system linear. We present numerical results for a set of test problems to demonstrate the ability of the code. The numerical treatments of advection and collision terms are validated first in the diffusion and free streaming limits. Then we compute steady neutrino distributions for a background extracted from a spherically symmetric, general relativistic simulation of 15Msun star and compare them with the results in the latter computation. We also demonstrate multi-D capabilities of the 3D code solving neutrino transfers for artificially deformed supernova cores in 2D and 3D. Formal solutions along neutrino paths are utilized as exact solutions. We plan to apply this code to the 3D neutrino-radiation hydrodynamics simulations of supernovae. This is the first article in a series of reports on the development.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT . Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا