ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile neutrino dark matter and core-collapse supernovae

73   0   0.0 ( 0 )
 نشر من قبل MacKenzie Warren
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have explored the impact of sterile neutrino dark matter on core-collapse supernova explosions. We have included oscillations between electron neutrinos or mixed $mu,tau$ neutrinos and right-handed sterile neutrinos into a supernova model. We have chosen sterile neutrino masses and mixing angles that are consistent with sterile neutrino dark matter candidates as indicated by recent x-ray flux measurements. Using these simulations, we have explored the impact of sterile neutrinos on the core bounce and shock reheating. We find that, for ranges of sterile neutrino mass and mixing angle consistent with most dark matter constraints, the shock energy can be significantly enhanced and even a model that does not explode can be made to explode. In addition, we have found that the presence of a sterile neutrino may lead to detectable changes in the observed neutrino luminosities.

قيم البحث

اقرأ أيضاً

We summarize the impact of sterile neutrino dark matter on core-collapse supernova explosions. We explore various oscillations between electron neutrinos or mixed $mu-tau$ neutrinos and right-handed sterile neutrinos that may occur within a core-coll apse supernova. In particular, we consider sterile neutrino masses and mixing angles that are consistent with sterile neutrino dark matter candidates as indicated by recent X-ray flux measurements. We find that the interpretation of the observed 3.5 keV X-ray excess as due to a decaying 7 keV sterile neutrino that comprises 100% of the dark matter would have almost no observable effect on supernova explosions. However, in the more realistic case in which the decaying sterile neutrino comprises only a small fraction of the total dark matter density due to the presence of other sterile neutrino flavors, WIMPs, etc., a larger mixing angle is allowed. In this case a 7 keV sterile neutrino could have a significant impact on core-collapse supernovae. We also consider mixing between $mu-tau$ neutrinos and sterile neutrinos. We find, however, that this mixing does not significantly alter the explosion and has no observable effect on the neutrino luminosities at early times.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
103 - I. Sagert , T. Fischer , M. Hempel 2011
We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compac t hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.
Heavy sterile neutrinos with masses ${mathcal O}(100)$ MeV mixing with active neutrinos can be produced in the core of a collapsing supernova (SN). In order to avoid an excessive energy loss, shortening the observed duration of the SN 1987A neutrino burst, we show that the active-sterile neutrino mixing angle should satisfy $sin^2 theta lesssim 5 times 10^{-7}$. For a mixing with tau flavour, this bound is much stronger than the ones from laboratory searches. Moreover, we show that in the viable parameter space the decay of such heavy sterile neutrinos in the SN envelope would lead to a very energetic flux of daughter active neutrinos; if not too far below current limits, this would be detectable in large underground neutrino observatories, like Super-Kamiokande, as a (slightly time-delayed) high-energy bump in the spectrum of a forthcoming Galactic SN event.
For a suite of fourteen core-collapse models during the dynamical first second after bounce, we calculate the detailed neutrino light curves expected in the underground neutrino observatories Super-Kamiokande, DUNE, JUNO, and IceCube. These results a re given as a function of neutrino-oscillation modality (normal or inverted hierarchy) and progenitor mass (specifically, post-bounce accretion history), and illuminate the differences between the light curves for 1D (spherical) models that dont explode with the corresponding 2D (axisymmetric) models that do. We are able to identify clear signatures of explosion (or non-explosion), the post-bounce accretion phase, and the accretion of the silicon/oxygen interface. In addition, we are able to estimate the supernova detection ranges for various physical diagnostics and the distances out to which various temporal features embedded in the light curves might be discerned. We find that the progenitor mass density profile and supernova dynamics during the dynamical explosion stage should be identifiable for a supernova throughout most of the galaxy in all the facilities studied and that detection by any one of them, but in particular more than one in concert, will speak volumes about the internal dynamics of supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا