ﻻ يوجد ملخص باللغة العربية
A graph polynomial $P$ is weakly distinguishing if for almost all finite graphs $G$ there is a finite graph $H$ that is not isomorphic to $G$ with $P(G)=P(H)$. It is weakly distinguishing on a graph property $mathcal{C}$ if for almost all finite graphs $Ginmathcal{C}$ there is $H in mathcal{C}$ that is not isomorphic to $G$ with $P(G)=P(H)$. We give sufficient conditions on a graph property $mathcal{C}$ for the characteristic, clique, independence, matching, and domination and $xi$ polynomials, as well as the Tutte polynomial and its specialisations, to be weakly distinguishing on $mathcal{C}$. One such condition is to be addable and small in the sense of C. McDiarmid, A. Steger and D. Welsh (2005). Another one is to be of genus at most $k$.
By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretatio
Graph polynomials are deemed useful if they give rise to algebraic characterizations of various graph properties, and their evaluations encode many other graph invariants. Algebraic: The complete graphs $K_n$ and the complete bipartite graphs $K_{n,n
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integra
A k-valuation is a special type of edge k-colouring of a medial graph. Various graph polynomials, such as the Tutte, Penrose, Bollobas-Riordan, and transition polynomials, admit combinatorial interpretations and evaluations as weighted counts of k-va