ﻻ يوجد ملخص باللغة العربية
By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma-Mansour-Wang-Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin-Ma-Ma-Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of even-degree nodes on odd levels and odd-degree nodes on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial $gamma$-positivity of the multiset Schett polynomials, a result implies both the symmetry and the unimodality of these polynomials.
A graph polynomial $P$ is weakly distinguishing if for almost all finite graphs $G$ there is a finite graph $H$ that is not isomorphic to $G$ with $P(G)=P(H)$. It is weakly distinguishing on a graph property $mathcal{C}$ if for almost all finite grap
For a finite subset $A$ of $mathbb{Z}_{>0}$, Lazar and Wachs (2019) conjectured that the number of cycles on $A$ with only even-odd drops is equal to the number of D-cycles on $A$. In this note, we introduce cycles on a multiset with only even-odd dr
The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, phylogenetic reconstruction, MCMC algorithms, and community detection in random graphs. Notably, the celebrated Belief P
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
A di-sk tree is a rooted binary tree whose nodes are labeled by $oplus$ or $ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di