ﻻ يوجد ملخص باللغة العربية
Reduction of flow compressibility with the corresponding ideally invariant helicities, universally for various fluid models of neutral and ionized gases, can be argued statistically and associated with the geometrical scenario in the Taylor-Proudman theorem and its analogues. A `chiral base flow/field, rooted in the generic intrinsic local structure, as well as an `equivalence principle is explained and used to bridge the single-structure mechanics and the helical statistics. The electric field fluctuations may similarly be depressed by the (self-)helicities of the two-fluid plasma model, with the geometry lying in the relation between the electric and density fields in a Maxwell equation.
We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions and turbulent transport coefficients of passive scalars in turbulent rotating helical and non-helical flows. We show that helicity af
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can pla
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DN
We study the evolution of kinetic and magnetic energy spectra in magnetohydrodynamic flows in the presence of strong cross helicity. For forced turbulence, we find weak inverse transfer of kinetic energy toward the smallest wavenumber. This is plausi
Practically all flows are turbulent in nature and contain some kind of irregularly-shaped particles, e.g. dirt, pollen, or life forms such as bacteria or insects. The effect of the particles on such flows and vice-versa are highly non-trivial and are