ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Understanding of Foggy Scenes with Purely Synthetic Data

154   0   0.0 ( 0 )
 نشر من قبل Martin Hahner
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important for outdoor applications such as self-driving cars. In this paper, we propose a novel method, which uses purely synthetic data to improve the performance on unseen real-world foggy scenes captured in the streets of Zurich and its surroundings. Our results highlight the potential and power of photo-realistic synthetic images for training and especially fine-tuning deep neural nets. Our contributions are threefold, 1) we created a purely synthetic, high-quality foggy dataset of 25,000 unique outdoor scenes, that we call Foggy Synscapes and plan to release publicly 2) we show that with this data we outperform previous approaches on real-world foggy test data 3) we show that a combination of our data and previously used data can even further improve the performance on real-world foggy data.

قيم البحث

اقرأ أيضاً

Semantic segmentation of road scenes is one of the key technologies for realizing autonomous driving scene perception, and the effectiveness of deep Convolutional Neural Networks(CNNs) for this task has been demonstrated. State-of-art CNNs for semant ic segmentation suffer from excessive computations as well as large-scale training data requirement. Inspired by the ideas of Fine-tuning-based Transfer Learning (FTT) and feature-based knowledge distillation, we propose a new knowledge distillation method for cross-domain knowledge transference and efficient data-insufficient network training, named Spirit Distillation(SD), which allow the student network to mimic the teacher network to extract general features, so that a compact and accurate student network can be trained for real-time semantic segmentation of road scenes. Then, in order to further alleviate the trouble of insufficient data and improve the robustness of the student, an Enhanced Spirit Distillation (ESD) method is proposed, which commits to exploit a more comprehensive general features extraction capability by considering images from both the target and the proximity domains as input. To our knowledge, this paper is a pioneering work on the application of knowledge distillation to few-shot learning. Persuasive experiments conducted on Cityscapes semantic segmentation with the prior knowledge transferred from COCO2017 and KITTI demonstrate that our methods can train a better student network (mIOU and high-precision accuracy boost by 1.4% and 8.2% respectively, with 78.2% segmentation variance) with only 41.8% FLOPs (see Fig. 1).
Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the communitys efforts in data collection, there are still few image datasets covering a wide range of scenes and objec t categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A generic network design called Cascade Segmentation Module is then proposed to enable the segmentation networks to parse a scene into stuff, objects, and object parts in a cascade. We evaluate the proposed module integrated within two existing semantic segmentation networks, yielding significant improvements for scene parsing. We further show that the scene parsing networks trained on ADE20K can be applied to a wide variety of scenes and objects.
Semantic segmentation is a challenging vision problem that usually necessitates the collection of large amounts of finely annotated data, which is often quite expensive to obtain. Coarsely annotated data provides an interesting alternative as it is u sually substantially more cheap. In this work, we present a method to leverage coarsely annotated data along with fine supervision to produce better segmentation results than would be obtained when training using only the fine data. We validate our approach by simulating a scarce data setting with less than 200 low resolution images from the Cityscapes dataset and show that our method substantially outperforms solely training on the fine annotation data by an average of 15.52% mIoU and outperforms the coarse mask by an average of 5.28% mIoU.
In dense foggy scenes, existing optical flow methods are erroneous. This is due to the degradation caused by dense fog particles that break the optical flow basic assumptions such as brightness and gradient constancy. To address the problem, we intro duce a semi-supervised deep learning technique that employs real fog images without optical flow ground-truths in the training process. Our network integrates the domain transformation and optical flow networks in one framework. Initially, given a pair of synthetic fog images, its corresponding clean images and optical flow ground-truths, in one training batch we train our network in a supervised manner. Subsequently, given a pair of real fog images and a pair of clean images that are not corresponding to each other (unpaired), in the next training batch, we train our network in an unsupervised manner. We then alternate the training of synthetic and real data iteratively. We use real data without ground-truths, since to have ground-truths in such conditions is intractable, and also to avoid the overfitting problem of synthetic data training, where the knowledge learned on synthetic data cannot be generalized to real data testing. Together with the network architecture design, we propose a new training strategy that combines supervised synthetic-data training and unsupervised real-data training. Experimental results show that our method is effective and outperforms the state-of-the-art methods in estimating optical flow in dense foggy scenes.
261 - Qi Wang , Sikai Bai , Junyu Gao 2021
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in intelligent video surveillance. Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models, and annotating data is an expensive work in real-world scenarios. In addition, due to domain gaps between different datasets, the performance is dramatically decreased when re-ID models pre-trained on label-rich datasets (source domain) are directly applied to other unlabeled datasets (target domain). In this paper, we attempt to remedy these problems from two aspects, namely data and methodology. Firstly, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them, which free humans from heavy data collections and annotations. Based on them, we build two synthetic person re-ID datasets with different scales, GSPR and mini-GSPR datasets. Secondly, we propose a synthesis-based multi-domain collaborative refinement (SMCR) network, which contains a synthetic pretraining module and two collaborative-refinement modules to implement sufficient learning for the valuable knowledge from multiple domains. Extensive experiments show that our proposed framework obtains significant performance improvements over the state-of-the-art methods on multiple unsupervised domain adaptation tasks of person re-ID.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا