ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Segmentation with Scarce Data

104   0   0.0 ( 0 )
 نشر من قبل Isay Katsman
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation is a challenging vision problem that usually necessitates the collection of large amounts of finely annotated data, which is often quite expensive to obtain. Coarsely annotated data provides an interesting alternative as it is usually substantially more cheap. In this work, we present a method to leverage coarsely annotated data along with fine supervision to produce better segmentation results than would be obtained when training using only the fine data. We validate our approach by simulating a scarce data setting with less than 200 low resolution images from the Cityscapes dataset and show that our method substantially outperforms solely training on the fine annotation data by an average of 15.52% mIoU and outperforms the coarse mask by an average of 5.28% mIoU.

قيم البحث

اقرأ أيضاً

Semantic segmentation of road scenes is one of the key technologies for realizing autonomous driving scene perception, and the effectiveness of deep Convolutional Neural Networks(CNNs) for this task has been demonstrated. State-of-art CNNs for semant ic segmentation suffer from excessive computations as well as large-scale training data requirement. Inspired by the ideas of Fine-tuning-based Transfer Learning (FTT) and feature-based knowledge distillation, we propose a new knowledge distillation method for cross-domain knowledge transference and efficient data-insufficient network training, named Spirit Distillation(SD), which allow the student network to mimic the teacher network to extract general features, so that a compact and accurate student network can be trained for real-time semantic segmentation of road scenes. Then, in order to further alleviate the trouble of insufficient data and improve the robustness of the student, an Enhanced Spirit Distillation (ESD) method is proposed, which commits to exploit a more comprehensive general features extraction capability by considering images from both the target and the proximity domains as input. To our knowledge, this paper is a pioneering work on the application of knowledge distillation to few-shot learning. Persuasive experiments conducted on Cityscapes semantic segmentation with the prior knowledge transferred from COCO2017 and KITTI demonstrate that our methods can train a better student network (mIOU and high-precision accuracy boost by 1.4% and 8.2% respectively, with 78.2% segmentation variance) with only 41.8% FLOPs (see Fig. 1).
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convoluti on-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
Although deep learning greatly improves the performance of semantic segmentation, its success mainly lies in object central areas without accurate edges. As superpixels are a popular and effective auxiliary to preserve object edges, in this paper, we jointly learn semantic segmentation with trainable superpixels. We achieve it with fully-connected layers with Transparent Initialization (TI) and efficient logit consistency using a sparse encoder. The proposed TI preserves the effects of learned parameters of pretrained networks. This avoids a significant increase of the loss of pretrained networks, which otherwise may be caused by inappropriate parameter initialization of the additional layers. Meanwhile, consistent pixel labels in each superpixel are guaranteed by logit consistency. The sparse encoder with sparse matrix operations substantially reduces both the memory requirement and the computational complexity. We demonstrated the superiority of TI over other parameter initialization methods and tested its numerical stability. The effectiveness of our proposal was validated on PASCAL VOC 2012, ADE20K, and PASCAL Context showing enhanced semantic segmentation edges. With quantitative evaluations on segmentation edges using performance ratio and F-measure, our method outperforms the state-of-the-art.
Semantic segmentation requires a detailed labeling of image pixels by object category. Information derived from local image patches is necessary to describe the detailed shape of individual objects. However, this information is ambiguous and can resu lt in noisy labels. Global inference of image content can instead capture the general semantic concepts present. We advocate that holistic inference of image concepts provides valuable information for detailed pixel labeling. We propose a generic framework to leverage holistic information in the form of a LabelBank for pixel-level segmentation. We show the ability of our framework to improve semantic segmentation performance in a variety of settings. We learn models for extracting a holistic LabelBank from visual cues, attributes, and/or textual descriptions. We demonstrate improvements in semantic segmentation accuracy on standard datasets across a range of state-of-the-art segmentation architectures and holistic inference approaches.
Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressi ve results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا