ترغب بنشر مسار تعليمي؟ اضغط هنا

Diabetic Retinopathy Detection via Deep Convolutional Networks for Discriminative Localization and Visual Explanation

93   0   0.0 ( 0 )
 نشر من قبل Zhiguang Wang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We proposed a deep learning method for interpretable diabetic retinopathy (DR) detection. The visual-interpretable feature of the proposed method is achieved by adding the regression activation map (RAM) after the global averaging pooling layer of the convolutional networks (CNN). With RAM, the proposed model can localize the discriminative regions of an retina image to show the specific region of interest in terms of its severity level. We believe this advantage of the proposed deep learning model is highly desired for DR detection because in practice, users are not only interested with high prediction performance, but also keen to understand the insights of DR detection and why the adopted learning model works. In the experiments conducted on a large scale of retina image dataset, we show that the proposed CNN model can achieve high performance on DR detection compared with the state-of-the-art while achieving the merits of providing the RAM to highlight the salient regions of the input image.



قيم البحث

اقرأ أيضاً

148 - Yehui Yang , Tao Li , Wensi Li 2017
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our me thod can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm.
Widespread outreach programs using remote retinal imaging have proven to decrease the risk from diabetic retinopathy, the leading cause of blindness in the US. However, this process still requires manual verification of image quality and grading of i mages for level of disease by a trained human grader and will continue to be limited by the lack of such scarce resources. Computer-aided diagnosis of retinal images have recently gained increasing attention in the machine learning community. In this paper, we introduce a set of neural networks for diabetic retinopathy classification of fundus retinal images. We evaluate the efficiency of the proposed classifiers in combination with preprocessing and augmentation steps on a sample dataset. Our experimental results show that neural networks in combination with preprocessing on the images can boost the classification accuracy on this dataset. Moreover the proposed models are scalable and can be used in large scale datasets for diabetic retinopathy detection. The models introduced in this paper can be used to facilitate the diagnosis and speed up the detection process.
139 - Li Tian , Liyan Ma , Zhijie Wen 2020
Diabetic retinopathy (DR) is one of the leading causes of blindness. However, no specific symptoms of early DR lead to a delayed diagnosis, which results in disease progression in patients. To determine the disease severity levels, ophthalmologists n eed to focus on the discriminative parts of the fundus images. In recent years, deep learning has achieved great success in medical image analysis. However, most works directly employ algorithms based on convolutional neural networks (CNNs), which ignore the fact that the difference among classes is subtle and gradual. Hence, we consider automatic image grading of DR as a fine-grained classification task, and construct a bilinear model to identify the pathologically discriminative areas. In order to leverage the ordinal information among classes, we use an ordinal regression method to obtain the soft labels. In addition, other than only using a categorical loss to train our network, we also introduce the metric loss to learn a more discriminative feature space. Experimental results demonstrate the superior performance of the proposed method on two public IDRiD and DeepDR datasets.
The conventional spatial convolution layers in the Convolutional Neural Networks (CNNs) are computationally expensive at the point where the training time could take days unless the number of layers, the number of training images or the size of the t raining images are reduced. The image size of 256x256 pixels is commonly used for most of the applications of CNN, but this image size is too small for applications like Diabetic Retinopathy (DR) classification where the image details are important for accurate classification. This research proposed Frequency Domain Convolution (FDC) and Frequency Domain Pooling (FDP) layers which were built with RFFT, kernel initialization strategy, convolution artifact removal and Channel Independent Convolution (CIC) to replace the conventional convolution and pooling layers. The FDC and FDP layers are used to build a Frequency Domain Convolutional Neural Network (FDCNN) to accelerate the training of large images for DR classification. The Full FDC layer is an extension of the FDC layer to allow direct use in conventional CNNs, it is also used to modify the VGG16 architecture. FDCNN is shown to be at least 54.21% faster and 70.74% more memory efficient compared to an equivalent CNN architecture. The modified VGG16 architecture with Full FDC layer is reported to achieve a shorter training time and a higher accuracy at 95.63% compared to the original VGG16 architecture for DR classification.
In this report, we applied integrated gradients to explaining a neural network for diabetic retinopathy detection. The integrated gradient is an attribution method which measures the contributions of input to the quantity of interest. We explored som e new ways for applying this method such as explaining intermediate layers, filtering out unimportant units by their attribution value and generating contrary samples. Moreover, the visualization results extend the use of diabetic retinopathy detection model from merely predicting to assisting finding potential lesions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا