ترغب بنشر مسار تعليمي؟ اضغط هنا

Representation Learning with Statistical Independence to Mitigate Bias

87   0   0.0 ( 0 )
 نشر من قبل Ehsan Adeli
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Presence of bias (in datasets or tasks) is inarguably one of the most critical challenges in machine learning applications that has alluded to pivotal debates in recent years. Such challenges range from spurious associations between variables in medical studies to the bias of race in gender or face recognition systems. Controlling for all types of biases in the dataset curation stage is cumbersome and sometimes impossible. The alternative is to use the available data and build models incorporating fair representation learning. In this paper, we propose such a model based on adversarial training with two competing objectives to learn features that have (1) maximum discriminative power with respect to the task and (2) minimal statistical mean dependence with the protected (bias) variable(s). Our approach does so by incorporating a new adversarial loss function that encourages a vanished correlation between the bias and the learned features. We apply our method to synthetic data, medical images (containing task bias), and a dataset for gender classification (containing dataset bias). Our results show that the learned features by our method not only result in superior prediction performance but also are unbiased. The code is available at https://github.com/QingyuZhao/BR-Net/.

قيم البحث

اقرأ أيضاً

Human activities often occur in specific scene contexts, e.g., playing basketball on a basketball court. Training a model using existing video datasets thus inevitably captures and leverages such bias (instead of using the actual discriminative cues) . The learned representation may not generalize well to new action classes or different tasks. In this paper, we propose to mitigate scene bias for video representation learning. Specifically, we augment the standard cross-entropy loss for action classification with 1) an adversarial loss for scene types and 2) a human mask confusion loss for videos where the human actors are masked out. These two losses encourage learning representations that are unable to predict the scene types and the correct actions when there is no evidence. We validate the effectiveness of our method by transferring our pre-trained model to three different tasks, including action classification, temporal localization, and spatio-temporal action detection. Our results show consistent improvement over the baseline model without debiasing.
Learning representations of data is an important problem in statistics and machine learning. While the origin of learning representations can be traced back to factor analysis and multidimensional scaling in statistics, it has become a central theme in deep learning with important applications in computer vision and computational neuroscience. In this article, we review recent advances in learning representations from a statistical perspective. In particular, we review the following two themes: (a) unsupervised learning of vector representations and (b) learning of both vector and matrix representations.
Active learning is a powerful tool when labelling data is expensive, but it introduces a bias because the training data no longer follows the population distribution. We formalize this bias and investigate the situations in which it can be harmful an d sometimes even helpful. We further introduce novel corrective weights to remove bias when doing so is beneficial. Through this, our work not only provides a useful mechanism that can improve the active learning approach, but also an explanation of the empirical successes of various existing approaches which ignore this bias. In particular, we show that this bias can be actively helpful when training overparameterized models -- like neural networks -- with relatively little data.
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed , considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyramid CNN adopts a greedy-filter-and-down-sample operation, which enables the training procedure to be very fast and computation-efficient. In addition, the structure of Pyramid CNN can naturally incorporate feature sharing across multi-scale face representations, increasing the discriminative ability of resulting representation. Our basic network is capable of achieving high recognition accuracy ($85.8%$ on LFW benchmark) with only 8 dimension representation. When extended to feature-sharing Pyramid CNN, our system achieves the state-of-the-art performance ($97.3%$) on LFW benchmark. We also introduce a new benchmark of realistic face images on social network and validate our proposed representation has a good ability of generalization.
The Correlation Filter is an algorithm that trains a linear template to discriminate between images and their translations. It is well suited to object tracking because its formulation in the Fourier domain provides a fast solution, enabling the dete ctor to be re-trained once per frame. Previous works that use the Correlation Filter, however, have adopted features that were either manually designed or trained for a different task. This work is the first to overcome this limitation by interpreting the Correlation Filter learner, which has a closed-form solution, as a differentiable layer in a deep neural network. This enables learning deep features that are tightly coupled to the Correlation Filter. Experiments illustrate that our method has the important practical benefit of allowing lightweight architectures to achieve state-of-the-art performance at high framerates.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا