ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Head Attention for Multi-Modal Joint Vehicle Motion Forecasting

89   0   0.0 ( 0 )
 نشر من قبل Jean Mercat
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel vehicle motion forecasting method based on multi-head attention. It produces joint forecasts for all vehicles on a road scene as sequences of multi-modal probability density functions of their positions. Its architecture uses multi-head attention to account for complete interactions between all vehicles, and long short-term memory layers for encoding and forecasting. It relies solely on vehicle position tracks, does not need maneuver definitions, and does not represent the scene with a spatial grid. This allows it to be more versatile than similar model while combining any forecasting capabilities, namely joint forecast with interactions, uncertainty estimation, and multi-modality. The resulting prediction likelihood outperforms state-of-the-art models on the same dataset.

قيم البحث

اقرأ أيضاً

136 - Kaiqi Chen , Yong Lee , Harold Soh 2021
This work focuses on learning useful and robust deep world models using multiple, possibly unreliable, sensors. We find that current methods do not sufficiently encourage a shared representation between modalities; this can cause poor performance on downstream tasks and over-reliance on specific sensors. As a solution, we contribute a new multi-modal deep latent state-space model, trained using a mutual information lower-bound. The key innovation is a specially-designed density ratio estimator that encourages consistency between the latent codes of each modality. We tasked our method to learn policies (in a self-supervised manner) on multi-modal Natural MuJoCo benchmarks and a challenging Table Wiping task. Experiments show our method significantly outperforms state-of-the-art deep reinforcement learning methods, particularly in the presence of missing observations.
Anomaly detection is a crucial and challenging subject that has been studied within diverse research areas. In this work, we explore the task of log anomaly detection (especially computer system logs and user behavior logs) by analyzing logs sequenti al information. We propose LAMA, a multi-head attention based sequential model to process log streams as template activity (event) sequences. A next event prediction task is applied to train the model for anomaly detection. Extensive empirical studies demonstrate that our new model outperforms existing log anomaly detection methods including statistical and deep learning methodologies, which validate the effectiveness of our proposed method in learning sequence patterns of log data.
This paper introduces a hybrid algorithm of deep reinforcement learning (RL) and Force-based motion planning (FMP) to solve distributed motion planning problem in dense and dynamic environments. Individually, RL and FMP algorithms each have their own limitations. FMP is not able to produce time-optimal paths and existing RL solutions are not able to produce collision-free paths in dense environments. Therefore, we first tried improving the performance of recent RL approaches by introducing a new reward function that not only eliminates the requirement of a pre supervised learning (SL) step but also decreases the chance of collision in crowded environments. That improved things, but there were still a lot of failure cases. So, we developed a hybrid approach to leverage the simpler FMP approach in stuck, simple and high-risk cases, and continue using RL for normal cases in which FMP cant produce optimal path. Also, we extend GA3C-CADRL algorithm to 3D environment. Simulation results show that the proposed algorithm outperforms both deep RL and FMP algorithms and produces up to 50% more successful scenarios than deep RL and up to 75% less extra time to reach goal than FMP.
101 - Zekai Chen , Jiaze E , Xiao Zhang 2021
Time series forecasting is a key component in many industrial and business decision processes and recurrent neural network (RNN) based models have achieved impressive progress on various time series forecasting tasks. However, most of the existing me thods focus on single-task forecasting problems by learning separately based on limited supervised objectives, which often suffer from insufficient training instances. As the Transformer architecture and other attention-based models have demonstrated its great capability of capturing long term dependency, we propose two self-attention based sharing schemes for multi-task time series forecasting which can train jointly across multiple tasks. We augment a sequence of paralleled Transformer encoders with an external public multi-head attention function, which is updated by all data of all tasks. Experiments on a number of real-world multi-task time series forecasting tasks show that our proposed architectures can not only outperform the state-of-the-art single-task forecasting baselines but also outperform the RNN-based multi-task forecasting method.
This paper proposes a serialized multi-layer multi-head attention for neural speaker embedding in text-independent speaker verification. In prior works, frame-level features from one layer are aggregated to form an utterance-level representation. Ins pired by the Transformer network, our proposed method utilizes the hierarchical architecture of stacked self-attention mechanisms to derive refined features that are more correlated with speakers. Serialized attention mechanism contains a stack of self-attention modules to create fixed-dimensional representations of speakers. Instead of utilizing multi-head attention in parallel, the proposed serialized multi-layer multi-head attention is designed to aggregate and propagate attentive statistics from one layer to the next in a serialized manner. In addition, we employ an input-aware query for each utterance with the statistics pooling. With more layers stacked, the neural network can learn more discriminative speaker embeddings. Experiment results on VoxCeleb1 dataset and SITW dataset show that our proposed method outperforms other baseline methods, including x-vectors and other x-vectors + conventional attentive pooling approaches by 9.7% in EER and 8.1% in DCF0.01.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا