ﻻ يوجد ملخص باللغة العربية
Deepening our knowledge of the partonic content of nucleons and nuclei represents a central endeavour of modern high-energy and nuclear physics, with ramifications in related disciplines such as astroparticle physics. There are two main scientific drivers motivating these investigations of the partonic structure of hadrons. On the one hand, addressing fundamental open issues in our understanding in the strong interactions such as the origin of the nucleon mass, spin, and transverse structure; the presence of heavy quarks in the nucleon wave function; and the possible onset of novel gluon-dominated dynamical regimes. On the other hand, pinning down with the highest possible precision the substructure of nucleons and nuclei is a central component for theoretical predictions in a wide range of experiments, from proton and heavy ion collisions at the Large Hadron Collider to ultra-high energy neutrino interactions at neutrino telescopes. This Article presents a succinct non-technical overview of our modern understanding of the quark, gluon, and photon substructure of nucleons and nuclei, focusing on recent trends and results and discussing future perspectives for the field.
This volume is a collection of contributions for the 7-week program Probing Nucleons and Nuclei in High Energy Collisions that was held at the Institute for Nuclear Theory in Seattle, WA, USA, from October 1 until November 16, 2018. The program was d
We present a systematic quantum algorithm, which integrates both the hadronic state preparation and the evaluation of the real-time light-front correlations, to study the parton distribution functions (PDFs). As a proof-of-concept, we realize the fir
The Drell-Yan process provides important information on the internal structure of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions des
We analyse available experimental data on the total charged-current neutrino-nucleon and antineutrino-nucleon cross sections for quasielastic scattering and single-pion neutrinoproduction. Published results from the relevant experiments at ANL, BNL,
We study the nucleons partonic angular momentum (AM) content at peripheral transverse distances $b = mathcal{O}(M_pi^{-1})$, where the structure is governed by chiral dynamics. We compute the nucleon form factors of the energy-momentum tensor in chir