ﻻ يوجد ملخص باللغة العربية
We study the nucleons partonic angular momentum (AM) content at peripheral transverse distances $b = mathcal{O}(M_pi^{-1})$, where the structure is governed by chiral dynamics. We compute the nucleon form factors of the energy-momentum tensor in chiral effective field theory (ChEFT) and construct the transverse densities of AM at fixed light-front time. In the periphery the spin density is suppressed, and the AM is predominantly orbital. In the first-quantized representation of ChEFT in light-front form, the field-theoretical AM density coincides with the quantum-mechanical orbital AM density of the soft pions in the nucleons periphery.
Deepening our knowledge of the partonic content of nucleons and nuclei represents a central endeavour of modern high-energy and nuclear physics, with ramifications in related disciplines such as astroparticle physics. There are two main scientific dr
We study momentum imbalance as a function of jet asymmetry in high-energy heavy-ion collisions. To implement parton production during the collision, we include all Leading Order (LO) $2to 2$ and $2to 3$ parton processes in pQCD. The produced partons
We determine the small Bjorken $x$ asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton in the double-logarithmic approximation (DLA), which resums powers of $alpha_s ln^2 (1/x)$ with $alpha_s$ the strong coup
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of int
We make use of a simple scalar diquark model to study the potential transverse momentum and potential angular momentum, defined as the difference between the Jaffe-Manohar and Ji notions of transverse momentum and orbital angular momentum, respective