ﻻ يوجد ملخص باللغة العربية
The Drell-Yan process provides important information on the internal structure of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions describing the pion induced Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front constituent quark model, the spectator model, and available parametrizations of TMDs extracted from the experimental data. TMD evolution is implemented at Next-to-Leading Logarithmic precision for the first time for all asymmetries. Our results are compatible with the first experimental information, help to interpret the data from ongoing experiments, and will allow one to quantitatively assess the models in future when more precise data will become available.
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar.
Generalized transverse momentum dependent parton distributions (GTMDs) are the most general parton correlation functions of hadrons. By considering the exclusive double Drell-Yan process it is shown for the first time how quark GTMDs can be measured.
The lepton angular distributions of the Drell-Yan process in the fixed-target experiments are investigated by NLO and NNLO perturbative QCD. We present the calculated angular parameters $lambda$, $mu$, $ u$ and the degree of violation of the Lam-Tung
We discuss the transverse momentum Q_T distribution of Drell-Yan pair, produced in collisions of transversely polarized protons. We calculate the transversely polarized Drell-Yan cross section up to order alpha_s in the dimensional regularization sch
Although the proton was discovered about 100 years ago, its spin structure still remains a mystery. Recent studies suggest that the orbital angular momentum of sea quarks could significantly contribute to the protons spin. The SeaQuest experiment, wh