ﻻ يوجد ملخص باللغة العربية
We investigate the impact of a highly eccentric 10 $M_{rm oplus}$ (where $M_{rm oplus}$ is the Earth mass) planet embedded in a dusty protoplanetary disk on the dust dynamics and its observational implications. By carrying out high-resolution 2D gas and dust two-fluid hydrodynamical simulations, we find that the planets orbit can be circularized at large radii. After the planets orbit is circularized, partial gap opening and dust ring formation happen close to the planets circularization radius, which can explain the observed gaps/rings at the outer region of disks. When the disk mass and viscosity become low, we find that an eccentric planet can even open gaps and produce dust rings close to the pericenter and apocenter radii before its circularization. This offers alternative scenarios for explaining the observed dust rings and gaps in protoplanetary disks. A lower disk viscosity is favored to produce brighter rings in observations. An eccentric planet can also potentially slow down the dust radial drift in the outer region of the disk when the disk viscosity is low ($alpha lesssim2times10^{-4}$) and the circularization is faster than the dust radial drift.
The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in sub-mm images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used
We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array (ALMA). In each case the emission ring is found to arise at the edge of the observable disk o
We find that, under certain conditions, protoplanetary disks may spontaneously generate multiple, concentric gas rings without an embedded planet through an eccentric cooling instability. Using both linear theory and non-linear hydrodynamics simulati
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low viscosity disk by performing global 2D high-resolution hydrodynamical s
Planet formation is thought to begin with the growth of dust particles in protoplanetary disks from micrometer to millimeter and centimeter sizes. Dust growth is hindered by a number of growth barriers, according to dust evolution theory, while obser