ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrocarbon emission rings in protoplanetary disks induced by dust evolution

152   0   0.0 ( 0 )
 نشر من قبل Edwin A. Bergin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array (ALMA). In each case the emission ring is found to arise at the edge of the observable disk of mm-sized grains (pebbles) traced by (sub)mm-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e. not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.



قيم البحث

اقرأ أيضاً

We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
526 - Ya-Ping Li 2019
We investigate the impact of a highly eccentric 10 $M_{rm oplus}$ (where $M_{rm oplus}$ is the Earth mass) planet embedded in a dusty protoplanetary disk on the dust dynamics and its observational implications. By carrying out high-resolution 2D gas and dust two-fluid hydrodynamical simulations, we find that the planets orbit can be circularized at large radii. After the planets orbit is circularized, partial gap opening and dust ring formation happen close to the planets circularization radius, which can explain the observed gaps/rings at the outer region of disks. When the disk mass and viscosity become low, we find that an eccentric planet can even open gaps and produce dust rings close to the pericenter and apocenter radii before its circularization. This offers alternative scenarios for explaining the observed dust rings and gaps in protoplanetary disks. A lower disk viscosity is favored to produce brighter rings in observations. An eccentric planet can also potentially slow down the dust radial drift in the outer region of the disk when the disk viscosity is low ($alpha lesssim2times10^{-4}$) and the circularization is faster than the dust radial drift.
151 - Ya-Ping Li 2020
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low viscosity disk by performing global 2D high-resolution hydrodynamical s imulations. Within the vortex, due to its higher gas surface density and steeper pressure gradients, dust coagulation, fragmentation and drift (to the vortex center) are all quite efficient, producing dust particles ranging from micron to $sim 1.0 {rm cm}$, as well as overall high dust-to-gas ratio (above unity). In addition, the dust size distribution is quite non-uniform inside the vortex, with the mass weighted average dust size at the vortex center ($sim 4.0$ mm) being a factor of $sim10$ larger than other vortex regions. Both large ($sim$ mm) and small (tens of micron) particles contribute strongly to affect the gas motion within the vortex. As such, we find that the inclusion of dust coagulation has a significant impact on the vortex lifetime and the typical vortex lifetime is about 1000 orbits. After the initial gaseous vortex is destroyed, the dust spreads into a ring with a few remaining smaller gaseous vortices with a high dust concentration and a large maximum size ($sim$ mm). At late time, the synthetic dust continuum images for the coagulation case show as a ring inlaid with several hot spots at 1.33 mm band, while only distinct hot spots remain at 7.0 mm.
Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possib ly explaining asymmetries and dust concentrations recently observed at sub-millimeter and millimeter wavelengths. We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at sub-millimeter and millimeter wavelengths. Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and ngVLA observations. We find that a giant vortex not only captures dust grains with Stokes number St < 1 but can also affect the distribution of larger grains (with St ~ 1) carving a gap associated to a ring composed of incompletely trapped particles. The results are presented for different particle size and associated to their possible signatures in disk observations. Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves, without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of d isks containing an already formed planet. The resulting dust structures vary strongly with particle size and planetary gaps are much sharper than in the gas phase, making them easier to detect with ALMA than anticipated. We also find that there is a range of masses where a planet can open a gap in the dust layer whereas it doesnt in the gas disk. Our dust distributions are fed to the radiative transfer code MCFOST to compute synthetic images, in order to derive constraints on the settling and growth of dust grains in observed disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا