ترغب بنشر مسار تعليمي؟ اضغط هنا

Ring Formation in Protoplanetary Disks Driven by an Eccentric Instability

111   0   0.0 ( 0 )
 نشر من قبل Jiaru Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that, under certain conditions, protoplanetary disks may spontaneously generate multiple, concentric gas rings without an embedded planet through an eccentric cooling instability. Using both linear theory and non-linear hydrodynamics simulations, we show that a variety of background states may trap a slowly precessing, one-armed spiral mode that becomes unstable when a gravitationally-stable disk rapidly cools. The angular momentum required to excite this spiral comes at the expense of non-uniform mass transport that generically results in multiple rings. For example, one long-term hydrodynamics simulation exhibits four long-lived, axisymmetric gas rings. We verify the instability evolution and ring formation mechanism from first principles with our linear theory, which shows remarkable agreement with the simulation results. Dust trapped in these rings may produce observable features consistent with observed disks. Additionally, direct detection of the eccentric gas motions may be possible when the instability saturates, and any residual eccentricity leftover in the rings at later times may also provide direct observational evidence of this mechanism.

قيم البحث

اقرأ أيضاً

Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We investigate mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.
Recent millimeter and infrared observations have shown that gap and ring-like structures are common in both dust thermal emission and scattered-light of protoplanetary disks. We investigate the impact of the so-called Thermal Wave Instability (TWI) o n the millimeter and infrared scattered-light images of disks. We perform 1+1D simulations of the TWI and confirm that the TWI operates when the disk is optically thick enough for stellar light, i.e., small-grain-to-gas mass ratio of $gtrsim0.0001$. The mid-plane temperature varies as the waves propagate and hence gap and ring structures can be seen in both millimeter and infrared emission. The millimeter substructures can be observed even if the disk is fully optically thick since it is induced by the temperature variation, while density-induced substructures would disappear in the optically thick regime. The fractional separation between TWI-induced ring and gap is $Delta r/r sim$ 0.2-0.4 at $sim$ 10-50 au, which is comparable to those found by ALMA. Due to the temperature variation, snow lines of volatile species move radially and multiple snow lines are observed even for a single species. The wave propagation velocity is as fast as $sim$ 0.6 ${rm au~yr^{-1}}$, which can be potentially detected with a multi-epoch observation with a time separation of a few years.
Massive eccentric disks (gaseous or particulate) orbiting a dominant central mass appear in many astrophysical systems, including planetary rings, protoplanetary and accretion disks in binaries, and nuclear stellar disks around supermassive black hol es in galactic centers. We present an analytical framework for treating the nearly Keplerian secular dynamics of test particles driven by the gravity of an eccentric, apsidally aligned, zero-thickness disk with arbitrary surface density and eccentricity profiles. We derive a disturbing function describing the secular evolution of coplanar objects, which is explicitly related (via one-dimensional, convergent integrals) to the disk surface density and eccentricity profiles without using any ad hoc softening of the potential. Our analytical framework is verified via direct orbit integrations, which show it to be accurate in the low-eccentricity limit for a variety of disk models (for disk eccentricity < 0.1-0.2). We find that free precession in the potential of a disk with a smooth surface density distribution can naturally change from prograde to retrograde within the disk. Sharp disk features - edges and gaps - are the locations where this tendency is naturally enhanced, while the precession becomes very fast. Radii where free precession changes sign are the locations where substantial (formally singular) growth of the forced eccentricity of the orbiting objects occurs. Based on our results, we formulate a self-consistent analytical framework for computing an eccentricity profile for an aligned, eccentric disk (with a prescribed surface density profile) capable of precessing as a solid body under its own self-gravity.
526 - Ya-Ping Li 2019
We investigate the impact of a highly eccentric 10 $M_{rm oplus}$ (where $M_{rm oplus}$ is the Earth mass) planet embedded in a dusty protoplanetary disk on the dust dynamics and its observational implications. By carrying out high-resolution 2D gas and dust two-fluid hydrodynamical simulations, we find that the planets orbit can be circularized at large radii. After the planets orbit is circularized, partial gap opening and dust ring formation happen close to the planets circularization radius, which can explain the observed gaps/rings at the outer region of disks. When the disk mass and viscosity become low, we find that an eccentric planet can even open gaps and produce dust rings close to the pericenter and apocenter radii before its circularization. This offers alternative scenarios for explaining the observed dust rings and gaps in protoplanetary disks. A lower disk viscosity is favored to produce brighter rings in observations. An eccentric planet can also potentially slow down the dust radial drift in the outer region of the disk when the disk viscosity is low ($alpha lesssim2times10^{-4}$) and the circularization is faster than the dust radial drift.
90 - J. J. Zanazzi , Dong Lai 2017
It is usually thought that viscous torque works to align a circumbinary disk with the binarys orbital plane. However, recent numerical simulations suggest that the disk may evolve to a configuration perpendicular to the binary orbit (polar alignment) if the binary is eccentric and the initial disk-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined disks around eccentric binaries, calculating the disk warp profile and dissipative torque acting on the disk. For disks with aspect ratio $H/r$ larger than the viscosity parameter $alpha$, bending wave propagation effectively makes the disk precess as a quasi-rigid body, while viscosity acts on the disk warp and twist to drive secular evolution of the disk-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disk orientation) for the disk to evolve toward polar alignment with the eccentric binary. When the disk has a non-negligible angular momentum compared to the binary, the final polar alignment inclination angle is reduced from $90^circ$. For typical protoplanetary disk parameters, the timescale of the inclination evolution is shorter than the disk lifetime, suggesting that highly-inclined disks and planets may exist orbiting eccentric binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا