ترغب بنشر مسار تعليمي؟ اضغط هنا

A fiber-based beam profiler for high-power laser beams in confined spaces and ultra-high vacuum

148   0   0.0 ( 0 )
 نشر من قبل Christian Brand
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser beam profilometry is an important scientific task with well-established solutions for beams propagating in air. It has, however, remained an open challenge to measure beam profiles of high-power lasers in ultra-high vacuum and in tightly confined spaces. Here we present a novel scheme that uses a single multi-mode fiber to scatter light and guide it to a detector. The method competes well with commercial systems in position resolution, can reach through apertures smaller than $500times 500$~$mu$m$^2$ and is compatible with ultra-high vacuum conditions. The scheme is simple, compact, reliable and can withstand laser intensities beyond 2~MW/cm$^2$.

قيم البحث

اقرأ أيضاً

147 - F. Burri , M. Fertl , P. Feusi 2013
We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients w e have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.
145 - Y. Ishida , T. Otsu , A. Ozawa 2016
The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ~310 fs, res pectively; the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm2.
We describe the design, construction, and performance of an ultra-high vacuum (UHV) scanning tunneling microscope (STM) capable of imaging at dilution-refrigerator temperatures and equipped with a vector magnet. The primary objective of our design is to achieve a high level of modularity by partitioning the STM system into a set of easily separable, interchangeable components. This naturally segregates the UHV needs of STM instrumentation from the typically non-UHV construction of a dilution refrigerator, facilitating the usage of non-UHV materials while maintaining a fully bakeable UHV chamber that houses the STM. The modular design also permits speedy removal of the microscope head from the rest of the system, allowing for repairs, modifications, and even replacement of the entire microscope head to be made at any time without warming the cryostat or compromising the vacuum. Without using cryogenic filters, we measured an electron temperature of 184 mK on a superconducting Al(100) single crystal.
We present a tabletop six-axis vibration isolation system, compatible with Ultra-High Vacuum (UHV), which is actively damped and provides 25 dB of isolation at 10 Hz and 65 dB at 100 Hz. While this isolation platform has been primarily designed to su pport optics in the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, it is suitable for a variety of applications. The system has been engineered to facilitate the construction and assembly process, while minimizing cost. The platform provides passive isolation for six degrees of freedom using a combination of vertical springs and horizontal pendula. It is instrumented with voice-coil actuators and optical shadow sensors to damp the resonances. All materials are compatible with stringent vacuum requirements. Thanks to its architecture, the systems footprint can be adapted to meet spatial requirements, while maximizing the dimensions of the optical table. Three units are currently operating for LIGO. We present the design of the system, controls principle, and experimental results.
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespok e water-cooled Hukin crucible supporting a casting mold. Depending on the choice of mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bar. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا