ﻻ يوجد ملخص باللغة العربية
We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.
Laser beam profilometry is an important scientific task with well-established solutions for beams propagating in air. It has, however, remained an open challenge to measure beam profiles of high-power lasers in ultra-high vacuum and in tightly confin
We describe the design, construction, and performance of an ultra-high vacuum (UHV) scanning tunneling microscope (STM) capable of imaging at dilution-refrigerator temperatures and equipped with a vector magnet. The primary objective of our design is
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespok
We report a homebuilt ultra-high-vacuum (UHV) rotating sample manipulator with cryogenic cooling. The sample holder is thermally anchored to a built-in cryogenic cold head through flexible copper beryllium strips, permitting continuous sample rotatio
Gas electron multipliers (GEMs) have been overcoated with a high resistivity 10e14 - 10e15 Ohms / square amorphous carbon layer. The coating avoids charging up of the holes and provides a constant gain immediately after switching on independent of th