ﻻ يوجد ملخص باللغة العربية
We present a tabletop six-axis vibration isolation system, compatible with Ultra-High Vacuum (UHV), which is actively damped and provides 25 dB of isolation at 10 Hz and 65 dB at 100 Hz. While this isolation platform has been primarily designed to support optics in the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, it is suitable for a variety of applications. The system has been engineered to facilitate the construction and assembly process, while minimizing cost. The platform provides passive isolation for six degrees of freedom using a combination of vertical springs and horizontal pendula. It is instrumented with voice-coil actuators and optical shadow sensors to damp the resonances. All materials are compatible with stringent vacuum requirements. Thanks to its architecture, the systems footprint can be adapted to meet spatial requirements, while maximizing the dimensions of the optical table. Three units are currently operating for LIGO. We present the design of the system, controls principle, and experimental results.
This paper presents the results of the past seven years of experimental investigation and testing done on the two-stage twelve-axis vibration isolation platform for Advanced LIGO gravity waves observatories. This five-ton two-and-half-meter wide syst
A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic
Using a network of seismometers and sets of optimal filters, we implemented a feed-forward control technique to minimize the seismic contribution to multiple interferometric degrees of freedom of the LIGO interferometers. The filters are constructed
A broad range of scientific and industrial disciplines require precise optical measurements at very low light levels. Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments. By using relatively thic
New generations of gravity wave detectors require unprecedented levels of vibration isolation. This paper presents the final design of the vibration isolation and positioning platform used in Advanced LIGO to support the interferometers core optics.