ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsations, eruptions, and evolution of four yellow hypergiants

227   0   0.0 ( 0 )
 نشر من قبل A. Lobel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.M. van Genderen




اسأل ChatGPT حول البحث

We aim to explore the variable photometric and stellar properties of four yellow hypergiants (YHGs), HR8752, HR 5171A, $rho$ Cas, and HD 179821, and their pulsations of hundreds of days, and long-term variations (LTVs) of years. We tackled multi-colour and visual photometric data sets, looked for photometric indications betraying eruptions or enhanced mass-loss episodes, calculated stellar properties mainly using a published temperature calibration, and investigated the nature of LTVs and their influence on quasi-periods and stellar properties. The $BV$ photometry revealed a high-opacity layer in the atmospheres. When the temperature rises the mass loss increases as well, consequently, as the density of the high-opacity layer. As a result, the absorption in $B$ and $V$ grow. The absorption in $B$, presumably of the order of one to a few 0fm1, is always higher than in $V$. This difference renders redder and variable $(B-V)$ colour indexes, but the absorption law is unknown. This property of YHGs is unpredictable and explains why spectroscopic temperatures are always higher than photometric ones. We propose shorter distances for $rho$ Cas and HR 5171A than the accepted ones. Therefore, a correction to decrease the blue luminescence of HR 5171A by polycyclic aromatic hydrocarbon (PAH) molecules is necessary, and HR 5171A would no longer be a member of the cluster Gum48d. HR 5171A is only subject to one source of light variation, not by two as the literature suggests. Eruptive episodes of YHGs prefer relatively cool circumstances when a red evolutionary loop (RL) has shifted the star to the red on the HR diagram. After the eruption, a blue loop evolution (BL) is triggered lasting one to a few decades. The reddening episode of HR 5171A between 1960 and 1974 was most likely due to a red loop evolution, and the reddening after the 1975 eruption was likely due to a shell ejection.



قيم البحث

اقرأ أيضاً

Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the AGB and early post-AGB phases. We study the mass-loss in the post main-sequence evolution of massive stars, through the prope rties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-mm and FIR transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC+10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. On the basis of the results presented in an earlier study, we model the CO and 13CO emission in IRC+10420 and compare it to a set of lines ranging from the mm, to the FIR. Red supergiants have stronger high-excitation lines than the YHGs, indicating that they harbour dense and hot inner shells contributing to these transitions. Consequently, these high-J lines in RSGs originate from acceleration layers that have not yet reached the circumstellar terminal velocity and have narrower profiles than their flat-topped lower-J counterparts. The YHGs tend to lack this inner component, in line with the picture of detached, hollow envelopes derived from studies at longer wavelengths. NH3 is only detected in two sources (NML Cyg, IRC+10420), which are also observed to be the strongest water-line emitters of the studied sample. In contrast, OH is detected in all sources and does not seem to correlate with the water line intensities. We show that the IRC+10420 model derived solely from mm low-J CO transitions is capable of reproducing the high-J transitions when the temperature in the inner shell is simply lowered by about 30%.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejec tions and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.
236 - G. Israelian 1999
High-resolution near-ultraviolet spectra of the yellow hypergiants HR 8752 and rho Cassiopeiae indicate high effective temperatures placing both stars near the T_eff border of the ``yellow evolutionary void. At present, the temperature of HR 8752 is higher than ever. For this star we found Teff=7900+-200 K, whereas rho Cassiopeiae has Teff=7300+-200 K. Both, HR 8752 and rho Cassiopeiae have developed strong stellar winds with Vinf ~ 120 km/s and Vinf ~ 100 km/s, respectively. For HR 8752 we estimate an upper limit for the spherically symmetric mass-loss of 6.7X10^{-6}M_solar/yr. Over the past decades two yellow hypergiants appear to have approached an evolutionary phase, which has never been observed before. We present the first spectroscopic evidence of the blueward motion of a cool super/hypergiant on the HR diagram.
Electric currents play a critical role in the triggering of solar flares and their evolution. The aim of the present paper is to test whether the surface electric current has a surface or subsurface fixed source as predicts the circuit approach of fl are physics, or is the response of the surface magnetic field to the evolution of the coronal magnetic field as the MHD approach proposes. Out of all 19 X-class flares as observed by SDO from 2011 to 2016 near the disk center, we analyzed the only 9 eruptive flares for which clear ribbon-hooks were identifiable. Flare ribbons with hooks are considered to be the footprints of eruptive flux ropes in MHD flare models. For the first time, fine measurements of time-evolution of electric currents inside the hooks in the observations as well as in the OHM 3D MHD simulation are performed. Our analysis shows a decrease of the electric current in the area surrounded by the ribbon hooks during and after the eruption. We interpret the decrease of the electric currents as due to the expansion of the flux rope in the corona during the eruption. Our analysis brings a new contribution to the standard flare model in 3D.
151 - Maria R. Drout , Philip Massey , 2012
Yellow and red supergiants are evolved massive stars whose numbers and locations on the HR diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yello w supergiants observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants on the HR diagram was only recently resolved. Here we extend these studies by examining the yellow and red supergiant populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the red supergiants through a combination of radial velocities and a two-color surface gravity discriminant and, after re-characterizing the rotation curve of M33 with our newly selected red supergiants, we identify the yellow supergiants through a combination of radial velocities and the strength of the OI $lambda$7774 triplet. We examine ~1300 spectra in total and identify 121 yellow supergiants (a sample which is unbiased in luminosity above log(L/Lodot) ~ 4.8) and 189 red supergiants. After placing these objects on the HR diagram, we find that the latest generation of Geneva evolutionary tracks show excellent agreement with the observed locations of our red and yellow supergiants, the observed relative number of yellow supergiants with mass and the observed red supergiant upper mass limit. These models therefore represent a drastic improvement over previous generations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا