ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric current evolution at the footpoints of solar eruptions

286   0   0.0 ( 0 )
 نشر من قبل Krzysztof Barczynski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric currents play a critical role in the triggering of solar flares and their evolution. The aim of the present paper is to test whether the surface electric current has a surface or subsurface fixed source as predicts the circuit approach of flare physics, or is the response of the surface magnetic field to the evolution of the coronal magnetic field as the MHD approach proposes. Out of all 19 X-class flares as observed by SDO from 2011 to 2016 near the disk center, we analyzed the only 9 eruptive flares for which clear ribbon-hooks were identifiable. Flare ribbons with hooks are considered to be the footprints of eruptive flux ropes in MHD flare models. For the first time, fine measurements of time-evolution of electric currents inside the hooks in the observations as well as in the OHM 3D MHD simulation are performed. Our analysis shows a decrease of the electric current in the area surrounded by the ribbon hooks during and after the eruption. We interpret the decrease of the electric currents as due to the expansion of the flux rope in the corona during the eruption. Our analysis brings a new contribution to the standard flare model in 3D.



قيم البحث

اقرأ أيضاً

Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejec tions and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.
Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius $R$ undergoes an eruption when its axis reache s a location where the decay index $-d(ln B_{ex})/d(ln R)$ of the ambient magnetic field $B_{ex}$ is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux ropes internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range $ [1.3-1.5]$, rather than a `critical value for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.
We report on observations of a solar jet propagating along coronal loops taken by the Solar Dynamics Observatory (SDO), the Interface Region Imaging Spectragraph (IRIS) and 1-m New Vacuum Solar Telescope (NVST). The ejecta of the jet consist of multi -thermal components and propagate with a speed greater than 100 km/s. Brightenings are found in the remote footpoints of the coronal loops having compact and round-shape in the Halpha images. The emission peak of the remote brightening in the Atmospheric Imaging Assembly (AIA) 94 AA passband lags 60 s behind that in the jet base. The brightenings in the remote footpoints are believed to be consequences of heating by nonthermal electrons, MHD waves and/or conduction front generated by the magnetic reconnection processes of the jet. The heating in the remote footpoints leads to extension of the brightening along the loops toward the jet base, which is believed to be the chromospheric evaporation. This apparently acts as a brake on the ejecta, leading to a deceleration in the range from 1.5 to 3 km s$^{-2}$ with an error of $sim1.0$,km s$^{-2}$ when the chromospheric evaporation and the ejecta meet at locations near the loop apexes. The dynamics of this jet allows a unique opportunity to diagnose the chromospheric evaporation from the remote footpoints, from which we deduce a velocity in the range of 330--880 km/s.
226 - A.M. van Genderen 2019
We aim to explore the variable photometric and stellar properties of four yellow hypergiants (YHGs), HR8752, HR 5171A, $rho$ Cas, and HD 179821, and their pulsations of hundreds of days, and long-term variations (LTVs) of years. We tackled multi-colo ur and visual photometric data sets, looked for photometric indications betraying eruptions or enhanced mass-loss episodes, calculated stellar properties mainly using a published temperature calibration, and investigated the nature of LTVs and their influence on quasi-periods and stellar properties. The $BV$ photometry revealed a high-opacity layer in the atmospheres. When the temperature rises the mass loss increases as well, consequently, as the density of the high-opacity layer. As a result, the absorption in $B$ and $V$ grow. The absorption in $B$, presumably of the order of one to a few 0fm1, is always higher than in $V$. This difference renders redder and variable $(B-V)$ colour indexes, but the absorption law is unknown. This property of YHGs is unpredictable and explains why spectroscopic temperatures are always higher than photometric ones. We propose shorter distances for $rho$ Cas and HR 5171A than the accepted ones. Therefore, a correction to decrease the blue luminescence of HR 5171A by polycyclic aromatic hydrocarbon (PAH) molecules is necessary, and HR 5171A would no longer be a member of the cluster Gum48d. HR 5171A is only subject to one source of light variation, not by two as the literature suggests. Eruptive episodes of YHGs prefer relatively cool circumstances when a red evolutionary loop (RL) has shifted the star to the red on the HR diagram. After the eruption, a blue loop evolution (BL) is triggered lasting one to a few decades. The reddening episode of HR 5171A between 1960 and 1974 was most likely due to a red loop evolution, and the reddening after the 1975 eruption was likely due to a shell ejection.
Filaments, the dense cooler plasma floating in the solar corona supported by magnetic fields, generally exhibit certain activations before they erupt. In our previous study (Seki et al. 2017 ), we observed that the standard deviation of the line-of-s ight (LOS) velocities of the small-scale motions in a filament increased prior to its eruption. However, because that study only analyzed one event, it is unclear whether such an increase in the standard deviation of LOS velocities is common in filament eruptions. In this study, 12 filaments that vanished in H{alpha} line center images were analyzed in a manner similar to the one in our previous work; these included two quiescent filaments, four active region filaments, and six intermediate filaments. We verified that in all the 12 events, the standard deviation of the LOS velocities increased before the filaments vanished. Moreover, we observed that the quiescent filaments had approximately 10 times longer duration of an increase in the standard deviation than the other types of filaments. We concluded that the standard deviation of the LOS velocities of the small-scale motions in a filament can potentially be used as the precursor of a filament eruption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا