ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel/HIFI observations of red supergiants and yellow hypergiants: I. Molecular inventory

106   0   0.0 ( 0 )
 نشر من قبل Teyssier David J.P.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the AGB and early post-AGB phases. We study the mass-loss in the post main-sequence evolution of massive stars, through the properties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-mm and FIR transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC+10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. On the basis of the results presented in an earlier study, we model the CO and 13CO emission in IRC+10420 and compare it to a set of lines ranging from the mm, to the FIR. Red supergiants have stronger high-excitation lines than the YHGs, indicating that they harbour dense and hot inner shells contributing to these transitions. Consequently, these high-J lines in RSGs originate from acceleration layers that have not yet reached the circumstellar terminal velocity and have narrower profiles than their flat-topped lower-J counterparts. The YHGs tend to lack this inner component, in line with the picture of detached, hollow envelopes derived from studies at longer wavelengths. NH3 is only detected in two sources (NML Cyg, IRC+10420), which are also observed to be the strongest water-line emitters of the studied sample. In contrast, OH is detected in all sources and does not seem to correlate with the water line intensities. We show that the IRC+10420 model derived solely from mm low-J CO transitions is capable of reproducing the high-J transitions when the temperature in the inner shell is simply lowered by about 30%.

قيم البحث

اقرأ أيضاً

Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
102 - Maria R. Drout , Philip Massey , 2012
Yellow and red supergiants are evolved massive stars whose numbers and locations on the HR diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yello w supergiants observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants on the HR diagram was only recently resolved. Here we extend these studies by examining the yellow and red supergiant populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the red supergiants through a combination of radial velocities and a two-color surface gravity discriminant and, after re-characterizing the rotation curve of M33 with our newly selected red supergiants, we identify the yellow supergiants through a combination of radial velocities and the strength of the OI $lambda$7774 triplet. We examine ~1300 spectra in total and identify 121 yellow supergiants (a sample which is unbiased in luminosity above log(L/Lodot) ~ 4.8) and 189 red supergiants. After placing these objects on the HR diagram, we find that the latest generation of Geneva evolutionary tracks show excellent agreement with the observed locations of our red and yellow supergiants, the observed relative number of yellow supergiants with mass and the observed red supergiant upper mass limit. These models therefore represent a drastic improvement over previous generations.
74 - Mikako Matsuura 2013
We present an analysis of the far-infrared and submillimetre molecular emission line spectrum of the luminous M-supergiant VY CMa, observed with the SPIRE and PACS spectrometers aboard the Herschel Space Observatory. Over 260 emission lines were dete cted in the 190-650-micron SPIRE FTS spectra, with one-third of the observed lines being attributable to H2O. Other detected species include CO, 13CO, H2^18O, SiO, HCN, SO, SO2, CS, H2S, and NH3. Our model fits to the observed 12CO and 13CO line intensities yield a 12C/13C ratio of 5.6+-1.8, consistent with measurements of this ratio for other M supergiants, but significantly lower than previously estimated for VY CMa from observations of lower-J lines. The spectral line energy distribution for twenty SiO rotational lines shows two temperature components: a hot component at 1000 K, which we attribute to the stellar atmosphere and inner wind, plus a cooler ~200 K component, which we attribute to an origin in the outer circumstellar envelope. We fit the line fluxes of 12CO, 13CO, H2O and SiO, using the SMMOL non-LTE line transfer code, with a mass-loss rate of 1.85x10^-4 Msun yr^-1 between 9 R* and 350 R*. To fit the observed line fluxes of 12CO, 13CO, H2O and SiO with SMMOL non-LTE line radiative transfer code, along with a mass-loss rate of 1.85x10^-4 Msun yr^-1. To fit the high rotational lines of CO and H2O, the model required a rather flat temperature distribution inside the dust condensation radius, attributed to the high H2O opacity. Beyond the dust condensation radius the gas temperature is fitted best by an r^-0.5 radial dependence, consistent with the coolant lines becoming optically thin. Our H2O emission line fits are consistent with an ortho:para ratio of 3 in the outflow.
To gain insight into the physical conditions and kinematics of the warm (100-1000 K) gas around the red hyper-giant VY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instrument of the Herschel Space Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from a few tens to a few thousand K. These observations are part of the Herschel Guaranteed Time Key Program HIFISTARS. We detected the J=6-5, J=10-9, and J=16-15 lines of 12CO and 13CO at about 100, 300, and 750K above the ground state (and the 13CO J=9-8 line). These lines are crucial for improving the modelling of the internal layers of the envelope around VY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3, SiO, SO, SO2 HCN, OH and others, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned. Our observations confirm that VY CMas envelope must consist of two or more detached components. The molecular excitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular lines that are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O, most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrum of VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions. Compared with envelopes of other massive evolved stars, VY CMas emission is particularly strong in these vibrationally excited lines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.
226 - A.M. van Genderen 2019
We aim to explore the variable photometric and stellar properties of four yellow hypergiants (YHGs), HR8752, HR 5171A, $rho$ Cas, and HD 179821, and their pulsations of hundreds of days, and long-term variations (LTVs) of years. We tackled multi-colo ur and visual photometric data sets, looked for photometric indications betraying eruptions or enhanced mass-loss episodes, calculated stellar properties mainly using a published temperature calibration, and investigated the nature of LTVs and their influence on quasi-periods and stellar properties. The $BV$ photometry revealed a high-opacity layer in the atmospheres. When the temperature rises the mass loss increases as well, consequently, as the density of the high-opacity layer. As a result, the absorption in $B$ and $V$ grow. The absorption in $B$, presumably of the order of one to a few 0fm1, is always higher than in $V$. This difference renders redder and variable $(B-V)$ colour indexes, but the absorption law is unknown. This property of YHGs is unpredictable and explains why spectroscopic temperatures are always higher than photometric ones. We propose shorter distances for $rho$ Cas and HR 5171A than the accepted ones. Therefore, a correction to decrease the blue luminescence of HR 5171A by polycyclic aromatic hydrocarbon (PAH) molecules is necessary, and HR 5171A would no longer be a member of the cluster Gum48d. HR 5171A is only subject to one source of light variation, not by two as the literature suggests. Eruptive episodes of YHGs prefer relatively cool circumstances when a red evolutionary loop (RL) has shifted the star to the red on the HR diagram. After the eruption, a blue loop evolution (BL) is triggered lasting one to a few decades. The reddening episode of HR 5171A between 1960 and 1974 was most likely due to a red loop evolution, and the reddening after the 1975 eruption was likely due to a shell ejection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا