ﻻ يوجد ملخص باللغة العربية
The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magnetic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A$_{1g}$ phonon mode due to the emergence of ferromagnetic order. The linearly polarized, inelastically scattered light rotates by ~40$^o$, more than two orders of magnitude larger than the rotation from MOKE under the same experimental conditions. In CrI$_3$ bilayers, we show that the same A$_{1g}$ phonon mode becomes Davydov-split into two modes of opposite parity, exhibiting divergent selection rules that depend on inversion symmetry and the underlying magnetic order. By switching between the antiferromagnetic states and the fully spin-polarized states with applied magnetic and electric fields, we demonstrate the magnetoelectrical control over their selection rules. Our work underscores the unique opportunities provided by 2D magnets for controlling the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.
The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degree of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect ma
Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined wi
The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk
The physical properties of two-dimensional van der Waals (2D vdW) crystals depend sensitively on the interlayer coupling, which is intimately connected to the stacking arrangement and the interlayer spacing. For example, simply changing the twist ang
Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken. In certain 2D