ﻻ يوجد ملخص باللغة العربية
Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken. In certain 2D electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field. In principle, this offers the remarkable possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control. Here we demonstrate this principle for the first time using bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible that allows direct optical probing of these Berry-phase related properties. We show that the optical circular dichroism, which reflects the orbital magnetic moment in the valleys, can be continuously tuned from -15% to 15% as a function of gate voltage in bilayer MoS2 field-effect transistors. In contrast, the dichroism is gate-independent in monolayer MoS2, which is structurally non-centrosymmetric. Our work demonstrates the ability to continuously vary orbital magnetic moments between positive and negative values via symmetry control. This represents a new approach to manipulating Berry-phase effects for applications in quantum electronics associated with 2D electronic materials.
Bloch states of electrons in honeycomb two-dimensional crystals with multi-valley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic fi
The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magn
Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic momen
The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has be
We successfully demonstrated experimentally the electrical-field-mediated control of the spin of electrons confined in an SOI Quantum Dot (QD) device fabricated with a standard CMOS process flow. Furthermore, we show that the Back-Gate control in SOI