ﻻ يوجد ملخص باللغة العربية
The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk CrI3 is ferromagnetic (FM) with a Curie temperature of 61 K and a rhombohedral layer stacking, while few-layer CrI3 has a layered antiferromagnetic (AFM) phase with a lower ordering temperature of 45 K and a monoclinic stacking. In this work, we use cryogenic magnetic force microscopy to investigate CrI3 flakes in the intermediate thickness range (25 - 200 nm) and find that the two types of magnetic orders hence the stacking orders can coexist in the same flake, with a layer of ~13 nm at each surface being in the layered AFM phase similar to few-layer CrI3 and the rest in the bulk FM phase. The switching of the bulk moment proceeds through a remnant state with nearly compensated magnetic moment along the c-axis, indicating formation of c-axis domains allowed by a weak interlayer coupling strength in the rhombohedral phase. Our results provide a comprehensive picture on the magnetism in CrI3 and point to the possibility of engineering magnetic heterostructures within the same material.
The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degree of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect ma
Spin-orbit torque enables electrical control of the magnetic state of ferromagnets or antiferromagnets. In this work we consider the spin-orbit torque in the 2-d Van der Waals antiferromagnetic bilayer CrI$_3$, in the $n$-doped regime. In the purely
The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magn
The recently discovered two-dimensional (2D) magnetic insulator CrI$_3$ is an intriguing case for basic research and spintronic applications since it is a ferromagnet in the bulk, but an antiferromagnet in bilayer form, with its magnetic ordering ame
Gate-induced magnetic switching in bilayer CrI$_3$ has opened new ways for the design of novel low-power magnetic memories based on van der Waals heterostructures. The proposed switching mechanism seems to be fully dominated by electrostatic doping.