ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Solar Siblings in APOGEE and $Gaia$ DR2 with N-body Simulations

106   0   0.0 ( 0 )
 نشر من قبل Jeremy Webb J
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We make use of APOGEE and $Gaia$ data to identify stars that are consistent with being born in the same association or star cluster as the Sun. We limit our analysis to stars that match solar abundances within their uncertainties, as they could have formed from the same Giant Molecular Cloud (GMC) as the Sun. We constrain the range of orbital actions that solar siblings can have with a suite of simulations of solar birth clusters evolved in static and time-dependent tidal fields. The static components of each galaxy model are the bulge, disk, and halo, while the various time-dependent components include a bar, spiral arms, and GMCs. In galaxy models without GMCs, simulated solar siblings all have $J_R < 122$ km $rm s^{-1}$ kpc, $990 < L_z < 1986$ km $rm s^{-1}$ kpc, and $0.15 < J_z < 0.58$ km $rm s^{-1}$ kpc. Given the actions of stars in APOGEE and $Gaia$, we find 104 stars that fall within this range. One candidate in particular, Solar Sibling 1, has both chemistry and actions similar enough to the solar values that strong interactions with the bar or spiral arms are not required for it to be dynamically associated with the Sun. Adding GMCs to the potential can eject solar siblings out of the plane of the disk and increase their $J_z$, resulting in a final candidate list of 296 stars. The entire suite of simulations indicate that solar siblings should have $J_R < 122$ km $rm s^{-1}$ kpc, $353 < L_z < 2110$ km $rm s^{-1}$ kpc, and $J_z < 0.8$ km $rm s^{-1}$ kpc. Given these criteria, it is most likely that the association or cluster that the Sun was born in has reached dissolution and is not the commonly cited open cluster M67.

قيم البحث

اقرأ أيضاً

We search for the fastest stars in the subset of stars with radial velocity measurements of the second data release (DR2) of the European Space Agency mission Gaia. Starting from the observed positions, parallaxes, proper motions, and radial velociti es, we construct the distance and total velocity distribution of more than $7$ million stars in our Milky Way, deriving the full 6D phase space information in Galactocentric coordinates. These information are shared in a catalogue, publicly available at http://home.strw.leidenuniv.nl/~marchetti/research.html. To search for unbound stars, we then focus on stars with a probability greater than $50 %$ of being unbound from the Milky Way. This cut results in a clean sample of $125$ sources with reliable astrometric parameters and radial velocities. Of these, $20$ stars have probabilities greater than 80 $%$ of being unbound from the Galaxy. On this latter sub-sample, we perform orbit integration to characterize the stars orbital parameter distributions. As expected given the relatively small sample size of bright stars, we find no hypervelocity star candidates, stars that are moving on orbits consistent with coming from the Galactic Centre. Instead, we find $7$ hyper-runaway star candidates, coming from the Galactic disk. Surprisingly, the remaining $13$ unbound stars cannot be traced back to the Galaxy, including two of the fastest stars (around $700$ km/s). If conformed, these may constitute the tip of the iceberg of a large extragalactic population or the extreme velocity tail of stellar streams.
Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Suns birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.
114 - N. Chornay , N. A. Walton 2020
Context: Accurate distance measurements are fundamental to the study of Planetary Nebulae (PNe) but have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims: Accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods: We develop and apply an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg H$alpha$ (HASH) PN catalogue, taking into account the BP--RP colours of the emph{Gaia} sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources are inferred directly from the data. Results: We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.
We present a wavelet-based algorithm to identify dwarf galaxies in the Milky Way in ${it Gaia}$ DR2 data. Our algorithm detects overdensities in 4D position--proper motion space, making it the first search to explicitly use velocity information to se arch for dwarf galaxy candidates. We optimize our algorithm and quantify its performance by searching for mock dwarfs injected into ${it Gaia}$ DR2 data and for known Milky Way satellite galaxies. Comparing our results with previous photometric searches, we find that our search is sensitive to undiscovered systems at Galactic latitudes~$lvert brvert>20^{circ}$ and with half-light radii larger than the 50% detection efficiency threshold for Pan-STARRS1 (PS1) at (${it i}$) absolute magnitudes of =$-7<M_V<-3$ and distances of $32$ kpc $< D < 64$ kpc, and (${it ii}$) $M_V< -4$ and $64$ kpc $< D < 128$ kpc. Based on these results, we predict that our search is expected to discover $5 pm 2$ new satellite galaxies: four in the PS1 footprint and one outside the Dark Energy Survey and PS1 footprints. We apply our algorithm to the ${it Gaia}$ DR2 dataset and recover $sim 830$ high-significance candidates, out of which we identify a gold standard list of $sim 200$ candidates based on cross-matching with potential candidates identified in a preliminary search using ${it Gaia}$ EDR3 data. All of our candidate lists are publicly distributed for future follow-up studies. We show that improvements in astrometric measurements provided by ${it Gaia}$ EDR3 increase the sensitivity of this technique; we plan to continue to refine our candidate list using future data releases.
Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Usin g 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select $sim 24000$ old stars (${tau > 10}$ Gyr, with uncertainties $lesssim 15%$) within 2 kpc from the Sun (full sample). A cross-match with APOGEE-DR16 ($sim 1000$ stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius ($r_mathrm{per}$) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution $N$-body+Smooth Particle Hydrodynamics simulation, we demonstrate that one peak, at $r_mathrm{per}approx 7.1$ kpc, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, $sim 1/2$ ($sim 1/3$) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا