ﻻ يوجد ملخص باللغة العربية
Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Suns birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.
The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and
Passing stars can perturb the Oort Cloud, triggering comet showers and potentially extinction events on Earth. We combine velocity measurements for the recently discovered, nearby, low-mass binary system WISE J072003.20-084651.2 (Scholzs star) to cal
LP 876-10 is a nearby active M4 dwarf in Aquarius at a distance of 7.6 pc. The star is a new addition to the 10-pc census, with a parallax measured via the Research Consortium on Nearby Stars (RECONS) astrometric survey on the Small & Moderate Apertu
We analysed the chemodynamical evolution of the Galactic disc using precise [Mg/Fe] abundances from a previous study and accurate Gaia data. For this purpose, we estimated ages and dynamical properties for 366 MSTO solar neighbourhood stars from the
We present CFHT photometry and IRTF spectroscopy of low-mass candidate members of Serpens South and Serpens Core ($sim$430 pc, $sim$0.5 Myr), identified using a novel combination of photometric filters, known as the W-band method. We report SC182952+