ﻻ يوجد ملخص باللغة العربية
Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Using 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select $sim 24000$ old stars (${tau > 10}$ Gyr, with uncertainties $lesssim 15%$) within 2 kpc from the Sun (full sample). A cross-match with APOGEE-DR16 ($sim 1000$ stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius ($r_mathrm{per}$) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution $N$-body+Smooth Particle Hydrodynamics simulation, we demonstrate that one peak, at $r_mathrm{per}approx 7.1$ kpc, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, $sim 1/2$ ($sim 1/3$) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.
We investigate the inner regions of the Milky Way with a sample of unprecedented size and coverage thanks to APOGEE DR16 and {it Gaia} DR3 data. Our inner Galactic sample has more than 26,000 stars within $|X_{rm Gal}| <5$ kpc, $|Y_{rm Gal}| <3.5$ kp
Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and
We have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages,
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil
We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyze abundance gradients of O, N, Fe and Mg along the thin disc as well as the [Mg/Fe] vs. [Fe/H] relations and the meta